請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61453完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂東武(Tung-Wu Lu) | |
| dc.contributor.author | Lin Cheng-Li | en |
| dc.contributor.author | 林振立 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:03:21Z | - |
| dc.date.available | 2013-08-09 | |
| dc.date.copyright | 2013-08-09 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2013-08-05 | |
| dc.identifier.citation | Andriacchi, T.P., Stanwyck, T. S. and Galante J. O. (1986). Knee biomechanics and total knee replacement. J Arthroplasty 1, 211-219.
Banks, S. A., Markovich, G. D., & Hodge, W. A. (1997). In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties. Journal of Arthroplasty, 12(3), 297-304. Beynnon, B. D., B. C. Fleming, et al. (1995). Anterior cruciate ligament strain behavior during rehabilitation exercises ( in vivo). American Journal of Sports Medicine 23(21): 24-34. Beynnon, B., Howe, J. G., Pope, M. H., Johnson, R. J., & Fleming, B. C. (1992). The measurement of anterior cruciate ligament strain in vivo. International Orthopaedics, 16(1), 1-12. Blankevoort, L., & Huiskes, R. (1991). Ligament-bone interaction in a three-dimensional model of the knee. Journal of Biomechanical Engineering, 113(3), 263-269. Bruce D. Beynnon*, Braden C. Fleming. (1998). Anterior cruciate ligament strain in-vivo:A review of previous work. Journal of Biomechanics, 519-525. Causes, Bonnin M. (2003). d'e’chec me’chanique des prosthe`ses totales du genou. In: Bonnin M, Chambat P, editors. La gonarthrose. Paris:Springer-Verlag France, 286-306. Chieh-Wei Keng, T.W. Lu (2013). Three-Dimensional Finite Element Analysis of the Knee-Joint Ligament During Sit-to-Stand. Institute of Biomedical Engineering College of Medicine and College of Engineering National Taiwan University Master Thesis. Colizza WA, Insall JN, Scuderi GR. (1995). The posterior-stabilized knee prosthesis: assessment of polyethylene damage and osteolysis after a ten-year minimum follow-up. J Bone Jt Surg Part A, 1713-1720. Dennis, D. A., Komistek, R. D., Colwell Jr, C. E., Ranawat, C. S., Scott, R. D., Thornhill, T. S., & Lapp, M. A. (1998). In vivo anteroposterior femorotibial translation of total knee arthroplasty: A multicenter analysis. Clinical Orthopaedics and Related Research(356), 47-57. Dennis, D. A., Komistek, R. D., Hoff, W. A., & Gabriel, S. M. (1996). In vivo knee kinematics derived using an inverse perspective technique. Clinical Orthopaedics and Related Research(331), 107-117. E. Carlos Rodriguez-Merchan, M.D., Ph.D. (2011). Instability Following Total Knee Arthroplasty. HSSJ 273-278. Emmerson KP, Moran CG, Pinder IM. (1996). Survivorship analysis of the kinematic stabilizer total knee replacement: a 10-14 year follow-up. J Bone Jt Surg Part B, 78:441-445. Escamilla, R. F., G. S. Fleisig, et al. (1998). Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Medicine & Science in Sports & Exercise., 30(34): 556-569. Fehring TK, Valadie AL. (1994). Knee instability after total knee arthroplasty. Clin Orthop, 299:157-162. Fort-Rodriquez DE, Scuderi GR, Insall JN. (1997). Survivorship of cemented total knee arthroplasty. Clin Orthop, 345:379-386. Fujie, H., Mabuchi, K., Woo, S. L., Livesay, G. A., Arai, S., & Tsukamoto, Y. (1993). The use of robotics technology to study human joint kinematics: a new methodology. . Journal of Biomechanical Engineering, 115(3), 211-217. Fujie, Hiromichi, Livesay, Glen A., Fujita, Masahiro, & Woo, Savio L. Y. (1996). Forces and moments in six-DOF at the human knee joint: Mathematical description for control. Journal of Biomechanics, 29(12), 1577-1585. Gage, J. R., P. A. Deluca, et al. (1995). Gait Analysis: principles and applications. The Journal of Bone and Joint Surgery 77-A(10), 1607-1623. Heck DA, Melfi CA, Mamlin LA, Katz BP, Arthur DS, Dittus RS. (1998). Revision rates after knee replacement in the United States., 36:661-669. Huseyin S. Yercana, Tarik Ait Si Selmib, Tahir S. Sugunc, Philippe Neyretd. (2005). Tibiofemoral instability in primary total knee replacement: A review,Part 1: Basic principles and classification. The Knee 12 257-266. Jer-An Guo, T.W. Lu. (2010). In Vivo Three-Dimensional Finite Element Simulations and Analyses of the Knee Ligaments During Functional Activities. Institute of Biomedical Engineering College of Medicine and College of Engineering National Taiwan University Master Thesis. Kadaba, M. P., H. K. Ramakrishnan, et al. (1990). Measurement of lower extremity kinematics during level walking. Journal of Orthopaedic Research 8(3):, 383-392. Kanamori, A., Woo, S. L., Ma, C. B., Zeminski, J., Rudy, T. W., Li, G., & Livesay, G. A. (2000). The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy., 16(6), 633-639. Lafortune, M. A., Cavanagh, P. R., Sommer Iii, H. J., & Kalenak, A. (1992). Three-dimensional kinematics of the human knee during walking. Journal of Biomechanics, 25(4), 347-357. Limbert, G., & Middleton, J. (2004). A transversely isotropic viscohyperelastic material Application to the modeling of biological soft connective tissues. International Journal of Solids and Structures, 41(15), 4237-4260. Limbert, Georges, & Middleton, John. (2003). A continuum transversely isotropic viscohyperelastic constitutive law application to the modeling of the human ACL. Summer Bioengineering Conference, Key Biscayne, Florida. Lu, T. W. (1997). In Partial Fulfillment of The Requirements for The Degree of Doctor of Philosophy. Lu, T. W., & O'Connor, J. J. (1996). Lines of action and moment arms of the major force-bearing structures crossing the human knee joint: Comparison between theory and experiment. Journal of Anatomy, 189(3), 575-585. Lu, T. W., & O’Connor, J. J. (1999). Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of Biomechanics, 32(2), 129-134. Lu, T. W., Tsai, T. Y., Kuo, M. Y., Hsu, H. C., & Chen, H. L. (2008). In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Medical Engineering and Physics, 30(8), 1004-1012. Majewski, M., Susanne, Habelt, & Klaus, Steinbruck. (2006). Epidemiology of athletic knee injuries: A 10-year study. The Knee, 13(3), 184-188. Markolf, K L, Gorek, J F, Kabo, M, & Shapiro, M S. (1990). Direct Measurement of Resultant Forces in the Anterior Cruciate Ligament. Journal of Bone and Joint Surgery, 72-A(4), 557-567. Markolf, K. L., Wascher, D. C., & Finerman, G. A. (1993). Direct in vitro measurement of forces in the cruciate ligaments. Part II: The effect of section of the posterolateral structures. Journal of Bone & Joint Surgery - American Volume., 75(3), 387-394. Matsumoto, H., Seedhom, B. B., Suda, Y., Otani, T., & Fujikawa, K. (2000). Axis location of tibial rotation and its change with flexion angle. Clinical Orthopaedics and Related Research(371), 178-182. Mitts K, Muldoon MP, Gladden M, Padgett DE. (2001). Instability after total knee arthroplasty with the Miller-Galante II total knee. J Arthroplast, 16(14):422-427. Nordin, Margareta, & Frankel. (2001). Basic Biomechanics of the Muscloskeletal System. 3rd ed. Nordin, Margareta, & Frankel, Victor H. (Eds.). (2001). Basic Biomechanics of the Muscloskeletal System (3rd ed.). Papannagari, R., DeFrate, L. E., Nha, K. W., Moses, J. M., Moussa, M., Gill, T. J., & Li, G. (2007). Function of posterior cruciate ligament bundles during in vivo knee flexion. American Journal of Sports Medicine, 35(9), 1507-1512. Parrate S, Pagnano MW. (2008). Instability after total knee arthroplasty. J Bone Joint Surg Am, 90: 184-194. Pena, E., Calvo, B., Martinez, M. A., & Doblare, M. (2006). A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. Journal of Biomechanics, 39(9), 1686-1701. doi: 10.1016/j.jbiomech.2005.04.030 Rudy, T. W., Livesay, G. A., Woo, S. L., & Fu, F. H. (1996). A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. Journal of Biomechanics., 29(10), 1357-1360. Scott, R. D., & Thornhill, T. S. (1994). Posterior cruciate supplementing total knee replacement using conforming inserts and cruciate recession: Effect on range of motion and radiolucent lines. Clinical Orthopaedics and Related Research(309), 146-149. Scuderi GR, Insall JN, Windsor RE, Moran MC. (1989). Survivorship of cemented knee replacements. J Bone Jt Surg Part B, 71:798-803. Takahashi, M., Doi, M., Abe, M., Suzuki, D., & Nagano, A. (2006). Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. . American Journal of Sports Medicine, 34(5), 787-792. Tsai, T. Y.Lu, T. W. (2004). Measurement of the Kinematics of Normal and ACL Deficient Knee Using Fluoroscopy with Computer Bone Models. Insitute of Biomedical Engineering, College of Engineering.Taipei National Taiwan University, 93. Tsai, Tsung-Yuan, Lu, Tung-Wu, Chen, Chung-Ming, Kuo, Mei-Ying, & Hsu, Horng-Chaung. (2010). A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy. Medical Physics, 37(3), 1273-1284. doi: 10.1118/1.3301596 Vandevelde D, Huten D, Bassaine M, Duranthon L-A. (2001). Les reprises pour laxite’s fe’moro-tibiales. Rev Chir Orthop Repar Appar Mot, 87:158-163. Vince KG, Abdeen A, Sugimori T. (2006). The unstable total knee arthroplasty: Causes and cures. J Arthroplasty, 21: 44-49. Vince KG, Insall JN, Kelly MA. (1989). The total condylar prosthesis: 10- to 12-year results of a cemented knee replacement. J Bone Jt Surg Part B, 71:793-797. Weir DJ, Moran CG, Pinder IM. (1996). Kinematic condylar total knee arthroplasty: 14-year survivorship analysis of 208 consecutive cases. J Bone Jt Surg Part B, 78:907-911. Weiss, J. A., Maker, B. N., & Govindjee, S. (1996). Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering, 135(1-2), 107-128. Wilson, D. R., Feikes, J. D., & O'Connor, J. J. (1998). Ligaments and articular contact guide passive knee flexion. Journal Of Biomechanics, 31(12), 1127-1136. Wilson, D. R., Feikes, J. D., Zavatsky, A. B., & O'Connor, J. J. . (2000). he components of passive knee movement are coupled to flexion angle. Journal Of Biomechanics, 33(4), 465-473. Zhong, Y. L., Wang, Y., Wang, H. P., Rong, K., & Xie, L. (2011). Stress changes of lateral collateral ligament at different knee flexion with or without displaced movements: A 3-dimensional finite element analysis. Chinese Journal of Traumatology - English Edition, 14(2), 79-83. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61453 | - |
| dc.description.abstract | 膝關節退化性關節炎,此疾病是因為關節面軟骨破壞,導致潤滑程度不夠,而骨頭互相摩擦使病患在行走時感到疼痛。目前治療膝關節軟骨退化性關節炎方法是進行全膝關節置換手術,手術過程必須將前十字韌帶切除。但是在膝關節缺少前十字韌帶的情形下,膝關節的被動穩定會受到影響。想要了解其影響度,就必須想辦法量測膝關節剩餘韌帶受力情形。量測方法有分侵入式量測法與非侵入式量測。這兩種量測技術都有其優缺點,但在這電腦普及的時代,利用建構模型採取有限元素分析的方法日益興盛。
本實驗室利用已經驗證過的有限元素分析流程應用在活體上,實驗方式利用電腦斷層掃瞄與核磁共振掃描重建膝關節模型,利用膝關節穩定器(KT-2000)關節取得韌帶材料性質,動態X光影像與電腦模型比對技術得到活體功能性動作的運動學資訊。本研究的實驗對象為正常人與全膝關節置換手術病患。在坐到站動作中透過本實驗室有限元素分析流程進行分析。透過正常人與全膝關節置換病患在前十字韌帶的差異,來探討在缺少前十字韌帶的情形。對於聚乙烯內襯厚薄的改變進行討論對全膝關節置換病患膝關節韌帶的影響。透過敏感度測試去探討,何種因素會影響有限元素分析結果。透過鬆弛度測試結果,再利用本研究定義的鬆弛度範圍去探討在坐到站瞬間的穩定度,並配合動作分析結果去探討在坐到站瞬間韌帶與肌肉如何去抵抗外力。 將本實驗室有限元素分析流程應用於活體實驗上,確實重現正常人與全膝關節置換病患在坐到站過程中的韌帶受力情形。敏感度測試結果顯示,在設定有限元素的邊界條件時,需多加注意在垂直軸上的位移與冠狀軸上的位移。鬆弛度測試結果顯示,全膝關節置換病患缺少前十字韌帶情況下,鬆弛度範圍比正常人平均值大。顯示全膝關節置換病患比正常人在坐到站瞬間較不穩定。 關鍵字:有限元素法、坐到站、全膝關節置換手術、人工膝關節、活體量測、退化性關節炎、敏感度測試、鬆弛度測試、鬆弛度範圍 | zh_TW |
| dc.description.abstract | Osteoarthritic knees is because the joint surface cartilage is destroyed, cause enough lubrication, and the bones rub against each other so that patients feel pain when walking. The treatment of osteoarthritis of the knee cartilage methods for total knee replacement surgery, the surgical procedure must be anterior cruciate ligament resection. However, in the case of the absence of the anterior cruciate ligament in knee, passive stability will be affected in knee. Want to understand the affect, we must think of a way to measure forces situation of residual ligaments in knee. The measurement method is divided into invasive measurement method and the non-invasive measurement. These two measurement techniques have their advantages and disadvantages, but in this era of widespread use of computers, finite element analysis method is burgeoning.
The laboratory using validated finite element analysis process used in vivo experiment. Experiments using computer tomography and magnetic resonance imaging scanreconstruction knee model. Joint knee stability (KT-2000) obtain the ligament material properties. Dynamic X-ray images and computer models image registration obtain kinematics information in function of motion. Subjects are normal people and total knee replacement patients. Using laboratory finite element analysis process to analysis subjects in sit-to-stand. Through normal and total knee replacement patients anterior cruciate ligament differences to explore in the absence of the anterior cruciate ligament situation. Discuss the affects of total knee replacement patients that change insert thickness. Sensitivity tests to investigate the factors which will affect the results of finite element analysis. Through laxity test results, and then use the definition of stability in this study to explore the range of laxity in sit-to-stand, and with the results of the motion analysis to investigate ligaments and muscles how to resist external forces in instant of sit-to-stand. The laboratory will be used in finite element analysis process in vivo experiments, really reproduce ligaments forces of normal and total knee replacement patients during sit-to-stand. Sensitivity test results showed that the finite element in setting the boundary conditions, the need to pay more attention to the displacement in the vertical axis and coronal axis displacement. Laxity test results showed that total knee replacement patients lack the anterior cruciate ligament , the range of laxity more than mean of normal. Total knee replacement patients more unstable than normal in instant of sit-to-stand. Key Words: Finite element analysis, Sit to stand, Total knee replacement surgery, The in vivo measurement, Osteoarthritis, Sensitivity test, laxity test, range of laxity | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:03:21Z (GMT). No. of bitstreams: 1 ntu-101-R00548042-1.pdf: 4277954 bytes, checksum: 64ef171324297f60a6cabe6f507c51e5 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 圖目錄 VII 表目錄 XII 第1章 緒論 1 第一節 研究背景 1 第二節 膝關節之功能解剖構造 4 第三節 膝關節之運動學 6 第四節 膝關節韌帶之組成與力學性質 8 第五節 人工全膝關節 11 第六節 文獻回顧 13 一、 膝關節韌帶受力 13 二、 膝關節韌帶數學模型 18 三、 膝關節運動學量測 25 四、 人工膝關節 30 第七節 研究目的 32 第2章 實驗材料與流程 33 第一節 實驗對象 33 第二節 實驗儀器與設備 33 第三節 試體之驗證實驗 35 第四節 活體實驗 39 第3章 韌帶模型有限元素分析與驗證 43 第一節 分析流程 44 第二節 三維膝關節模型 46 第三節 材料特性 50 第四節 邊界條件 53 第五節 全膝關節置換手術病患的有限元素模擬分析 54 第六節 韌帶模型之敏感度測試 59 第七節 韌帶模型之鬆弛度測試 61 第4章 研究結果 62 第一節 在坐到站過程中有限元素分析結果 62 第二節 敏感度測試結果 70 第三節 鬆弛度測試結果 74 第5章 討論 90 第一節 韌帶之有限元素分析 91 第二節 敏感度測試 92 第三節 鬆弛度測試 93 第6章 總結 96 第一節 結論 96 第二節 未來目標 97 參考資料 98 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鬆弛度範圍 | zh_TW |
| dc.subject | 鬆弛度測試 | zh_TW |
| dc.subject | 敏感度測試 | zh_TW |
| dc.subject | 退化性關節炎 | zh_TW |
| dc.subject | 活體量測 | zh_TW |
| dc.subject | 人工膝關節 | zh_TW |
| dc.subject | 全膝關節置換手術 | zh_TW |
| dc.subject | 坐到站 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | laxity test | en |
| dc.subject | Sit to stand | en |
| dc.subject | Total knee replacement surgery | en |
| dc.subject | The in vivo measurement | en |
| dc.subject | Osteoarthritis | en |
| dc.subject | Sensitivity test | en |
| dc.subject | Finite element analysis | en |
| dc.subject | range of laxity | en |
| dc.title | 正常人與全膝關節置換病患在坐到站動作中膝關節韌帶之有限元素分析 | zh_TW |
| dc.title | Finite Element Analysis of the Knee Ligaments
During Sit-to-Stand in Normal and Total Knee Replacement | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王至弘(Jyh-Horng Wang),林聰穎(LIN,TSUNG-YING) | |
| dc.subject.keyword | 有限元素法,坐到站,全膝關節置換手術,人工膝關節,活體量測,退化性關節炎,敏感度測試,鬆弛度測試,鬆弛度範圍, | zh_TW |
| dc.subject.keyword | Finite element analysis,Sit to stand,Total knee replacement surgery,The in vivo measurement,Osteoarthritis,Sensitivity test,laxity test,range of laxity, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
