Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61449
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂東武(Tung-Wu Lu)
dc.contributor.authorChen Chun Haoen
dc.contributor.author陳淳晧zh_TW
dc.date.accessioned2021-06-16T13:03:16Z-
dc.date.available2014-08-09
dc.date.copyright2013-08-09
dc.date.issued2013
dc.date.submitted2013-08-05
dc.identifier.citation[1] Baumhauer J. F., Alosa D. M., and Renstrom P. A. F. H., 1995, “A prospective study of ankle injury risk factors.,” The American Journal of Sports Medicine, 23(5), pp. 564–570.
[2] Yeung M. S., Chan K. M., So C. H., and Yuan W. Y., 1994, “An epidemiological survey on ankle sprain.,” British Journal of Sports Medicine, 28(2), pp. 112–116.
[3] Howard J. L., Buckley R., McCormack R., Pate G., Leighton R., Petrie D., and Galpin R., 2003, “Complications following management of displaced intra-articular calcaneal fractures: a prospective randomized trial comparing open reduction internal fixation with nonoperative management.,” Journal of Orthopaedic Trauma, 17(4), pp. 241–249.
[4] Magee D. J., 2002, Orthopedic Physical Assessment., Saundes, Edmonton.
[5] Kapandji I. A., 1982, The Physiology of the Joints., Churchill Livingstone, New York.
[6] Kitaoka H. B., Crevoisier X. M., Harbst K., Hansen D., Kotajarvi B., and Kaufman K., 2006, “The effect of custom-made braces for the ankle and hindfoot on ankle and foot kinematics and ground reaction forces.,” Archives of Physical Medicine and Rehabilitation, 87(1), pp. 130–135.
[7] Netter F. H., 2002, 人體解剖學圖譜, 合記圖書出版社, 台北市.
[8] Sheridan B. D., Robinson D. E., Hubble M. J. W., and Winson I. G., 2006, “Ankle arthrodesis and its relationship to ipsilateral arthritis of the hind- and mid-foot.,” The Journal of Bone and Joint Surgery. British Volume, 88(2), pp. 206–207.
[9] Astion D. J., Dekand J. T., Otis J. C., and Kenneally S., 2010, “Motion of the hindfoot after simulated arthrodesis.,” Journal of Bone and Joint Surgery Joint Surgery. American Volume, 79(2), pp. 241–246.
[10] 俞光荣, and 周军杰;, 2005, “距下关节融合术后对中后足关节活动影响的相关研究及进展,” 中国矫形外科杂志, 13(15), pp. 1181–1183.
[11] 郭哲安, 2010, “功能性活動中膝關節韌帶之三維有限元素模擬與分析,” 國立臺灣大學.
[12] Lu T. W., 1997, “Geometric and mechanical modelling of the human locomotor system,” St. Peter’s College, Oxford.
[13] Lu T. W., Tsai T. Y., Kuo M. Y., Hsu H. C., and Chen H. L., 2008, “In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy.,” Medical Engineering and Physics, 30(8), pp. 1004–1012.
[14] Cohen Z. A., McCarthy D. M., Kwak S. D., Legrand P., Fogarasi F., Ciaccio E. J., and Ateshian G. A., 1999, “Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements,” Osteoarthritis and Cartilage, 7(1), pp. 95–109.
[15] Van Ginckel A., Roosen P., Almqvist K. F., Verstraete K., and Witvrouw E., 2011, “Effects of in vivo exercise on ankle cartilage deformation and recovery in healthy volunteers: an experimental study.,” Osteoarthritis and Cartilage, 19(9), pp. 1123–1131.
[16] Segal N. A., Anderson D. D., Iyer K. S., Baker J., Torner J. C., Lynch J. A., Felson D. T., Lewis C. E., and Brown T. D., 2009, “Baseline articular contact stress levels predict incident symptomatic knee osteoarthritis development in the MOST cohort.,” Journal of Orthopaedic Research, 27(12), pp. 1562–1568.
[17] Wan L., de Asla R. J., Rubash H. E., and Li G., 2008, “In vivo cartilage contact deformation of human ankle joints under full body weight.,” Journal of Orthopaedic Research, 26(8), pp. 1081–1089.
[18] Liu F., Kozanek M., Hosseini A., Van de Velde S. K., Gill T. J., Rubash H. E., and Li G., 2010, “In vivo tibiofemoral cartilage deformation during the stance phase of gait.,” Journal of Biomechanics, 43(4), pp. 658–665.
[19] Li G., Wan L., and Kozanek M., 2008, “Determination of real-time in-vivo cartilage contact deformation in the ankle joint.,” Journal of Biomechanics, 41(1), pp. 128–136.
[20] Bingham J. T., Papannagari R., Van de Velde S. K., Gross C., Gill T. J., Felson D. T., Rubash H. E., and Li G., 2008, “In vivo cartilage contact deformation in the healthy human tibiofemoral joint.,” Rheumatology, 47(11), pp. 1622–1627.
[21] Tohyama H., Beynnon B. D., Renstrom P. A., Theis M. J., Fleming B. C., and Pope M. H., 1995, “Biomechanical analysis of the ankle anterior drawer test for anterior talofibular ligament injuries.,” Journal of Orthopaedic Research, 13(4), pp. 609–614.
[22] Aydogan U., Glisson R. R., and Nunley J. A., 2006, “Extensor retinaculum augmentation reinforces anterior talofibular ligament repair.,” Clinical Orthopaedics and Related Research, 442, pp. 210–215.
[23] Bahr R., Pena F., and Shine J., 1997, “Mechanics of the anterior drawer and talar tilt tests: a cadaveric study of lateral ligament injuries of the ankle,” Acta Orthopaedica Scandinavica, 68(5), pp. 435–441.
[24] Prisk V. R., Imhauser C. W., O’Loughlin P. F., and Kennedy J. G., 2010, “Lateral ligament repair and reconstruction restore neither contact mechanics of the ankle joint nor motion patterns of the hindfoot.,” The Journal of Bone and Joint Surgery, 92(14), pp. 2375–2386.
[25] Fujie H., Mabuchi K., Woo S. L., Livesay G. A., Arai S., and Tsukamoto Y., 1993, “The use of robotics technology to study human joint kinematics: a new methodology.,” Journal of Biomechanical Engineering, 115(3), pp. 211–217.
[26] Kura H., Kitaoka H. B., Luo Z.-P., and An K.-N., 1998, “Measurement of surface contact area of the ankle joint.,” Clinical Biomechanics, 13(4-5), pp. 365–370.
[27] Macko V. W., Matthews L. S., Zwirkoski P., and Goldstein S. A., 1991, “The joint-contact area of the ankle,” Journal of Bone and Joint Surgery, 73(3), pp. 347–351.
[28] Dowdall J. F., Winter D. C., Devitt A., Bannigan J. B., and Felle P., 2002, “Intra-articular pressure distributions in simulated ankle malunion,” Foot and Ankle Surgery, 8, pp. 53–57.
[29] McKinley T. O., Rudert M. J., Koos D. C., Pedersen D. R., Baer T. E., Tochigi Y., and Brown T. D., 2006, “Contact stress transients during functional loading of ankle stepoff incongruities.,” Journal of Biomechanics, 39(4), pp. 617–626.
[30] Corazza F., Stagni R., Castelli V. P., and Leardini A., 2005, “Articular contact at the tibiotalar joint in passive flexion.,” Journal of Biomechanics, 38(6), pp. 1205–1212.
[31] Fujie H., Livesay G. A., Fujita M., and Woo S. L. Y., 1996, “Forces and moments in six-DOF at the human knee joint: mathematical description for control.,” Journal of Biomechanics, 29(12), pp. 1577–1585.
[32] 張方杰, 2011, “利用機械手臂關節測試系統與有限元素法研究前距腓與跟腓韌帶之生物力學,” 國立臺灣大學.
[33] Dickinson A. S., Taylor A. C., Ozturk H., and Browne M., 2011, “Experimental validation of a finite element model of the proximal femur using digital image correlation and a composite bone model.,” Journal of Biomechanical Engineering, 133(1), p. 014504.
[34] Boyce B. L., Grazier J. M., Jones R. E., and Nguyen T. D., 2008, “Full-field deformation of bovine cornea under constrained inflation conditions.,” Biomaterials, 29(28), pp. 3896–3904.
[35] Rusinkiewicz S., and Levoy M., 2001, “Efficient variants of the ICP algorithm,” 3-D Digital Imaging and Modeling, pp. 145–152.
[36] 徐徹菖, 2005, “利用工業機械手臂發展關節生物力學測試系統之研究,” 國立臺灣大學.
[37] Lapointe S. J., Siegler S., Hillstrom H., Nobilini R. R., Mlodzienski A., and Techner L., 1997, “Changes in the flexibility characteristics of the ankle complex due to damage to the lateral collateral ligaments: an in vitro and in vivo study.,” Journal of Orthopaedic Research, 15(3), pp. 331–341.
[38] Hollis J. M., Blasier R. D., and Flahiff C. M., 1995, “Simulated Lateral Ankle Ligamentous Injury Change in Ankle Stability,” The American Journal of Sports Medicine, 23(6), pp. 672–677.
[39] Bischof J. E., Spritzer C. E., Caputo A. M., Easley M. E., DeOrio J. K., Nunley J. A., and DeFrate L. E., 2010, “In vivo cartilage contact strains in patients with lateral ankle instability.,” Journal of Biomechanics, 43(13), pp. 2561–2566.
[40] Brama P. A. J., Karssenberg D., Barneveld A., and van Weeren P. R., 2001, “Contact areas and pressure distribution on the proximal articular surface of the proximal phalanx under sagittal plane loading,” Equine Veterinary Journal, 33(1), pp. 26–32.
[41] Shepherd D. E., and Seedhom B. B., 1999, “Thickness of human articular cartilage in joints of the lower limb.,” Annals of the Rheumatic Diseases, 58(1), pp. 27–34.
[42] Al-Ali D., Graichen H., Faber S., Englmeier K.-H., Reiser M., and Eckstein F., 2002, “Quantitative cartilage imaging of the human hind foot: precision and inter-subject variability.,” Journal of Orthopaedic Research, 20(2), pp. 249–256.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61449-
dc.description.abstract在人體各關節中,踝關節扮演了重要的腳色,幫助人體在行走或站立時維持穩定。而踝關節關節炎是常見的足部疾病。關節炎為軟骨面因為使用過度或運動傷害等原因,造成軟骨面的破損,使得關節疼痛影響了生活。若能直接量測軟骨在受力後的變形,將更進一步地了解關節炎的發生原因。
因此,本研究的出發點為瞭解關節面的力學特性,以及為了協助傷患的復健,探討關節內軟組織,尤其是距下關節骨融合後最容易受傷的踝關節面,在不同運動情形之下的力學分佈,與韌帶變形的交互作用。本研究的研究目的在於建構一方法,以量測關節軟骨在受力時的變形量。而本研究以人體踝關節為研究對象,試著了解在受拉伸試驗下踝關節韌帶與踝關節關節面的交互作用,並進行距下關節骨融合術,以觀察手術前後對踝關節關節面的影響。
本研究成功建構一方法,結合了三維全域變形及應變量測系統、醫學影像處理,以及機械手臂系統,可計算出關節軟骨厚度分布與其覆蓋面積,並可量測關節運動時各骨頭之運動學資訊,進而算出其關節軟骨於動態過程中之全域變形分布與周遭韌帶之表面應變分布。
本研究之對象為三具踝關節試體。試體先請骨科醫師處理,並在欲量測表面鋪上黑色粉末。將處理完之試體固定於機械手臂系統上,進行不同角度之拉伸試驗,同時進行兩台相機的同步拍攝。之後請骨科醫師進行距下關節骨融合術,重複上述拉伸試驗。拉伸試驗結束後,取下距骨、脛骨,拍攝踝關節軟骨面。在後續處理部分,將量測而得之軟骨資訊與動態三維資料結合,並匯入該試體之電腦斷層掃描後重建的骨頭模型,藉此算出軟骨厚度。而脛骨端與股骨端軟骨在動態資料中的交錯區域軟即代表骨受壓縮。
利用本方法建構出之踝關節軟骨模型,其踝關節脛骨端平均軟骨厚度為0.82 mm,平均面積為1907.7 mm2;踝關節距骨端平均軟骨厚度為0.85 mm,平均面積1289.5 mm2。另本研究將此方法應用於觀察距下關節融合術對於踝關節之生物力學影響。在特定角度下,距下關節融合術將增加關節面之最大變形量與平均變形量,或是造成變形集中於特定區域之現象。而於前拉測試中,由於距下關節被限制,其前距腓韌帶與後距腓韌帶其韌帶應變大於未進行距下關節融合術者。
由本方法量測之關節面變形資訊與周遭韌帶表面應變分布,將有助於了解關節於運動過程中其軟組織之交互作用,未來可進一步驗證電腦模型,提供臨床復健與手術診察的可靠參考依據。
zh_TW
dc.description.abstractAnkle joint plays an important role in maintain men’s stability in walking or standing. Arthritis is a form of joint disorder that involves inflammation of one or more joints. It is an usual ankle joint disease. Arthritis is a form of joint disorder that involves inflammation of one or more joints. The common causes of disease are related age, autoimmune diseases or joint infection. The major complaint by individuals who have arthritis is joint pain. Pain is often a constant and may be localized to the joint affected. The pain from arthritis is due to inflammation that occurs around the joint, damage to the joint from disease, daily wear and tear of joint, muscle strains caused by forceful movements against stiff painful joints and fatigue. Perhaps we could reveal more fact of arthritis if we can measure the deformation of articular surface.
Thus, we try to figure out the biomechanical properties of articular surface, especially in ankle joint which is the most likely to be injured after subtalar arthrodesis, a treatment of ankle arthritis. The main target of the study is to construct a method to measure the deformation of articular surface and the mechanical interaction between ligament and articular surface under external loads. The study use ankle joint cadaver to be the subject. There will also process subtalar arthrodese to observe the influence of subtalar arthrodesis in deformation of articular surface.
The study has constructed a new method that combined Vic-3D system, biomedical image process, and robot system on researching the mechanical interaction between ligaments and articular surface under external loads to get more biomechanical information, which can be applied on clinical.
The specimen in this study are three ankle joint cadavers. The ankle joint cadavers will remove muscle, fat and other soft tissues except ligaments and articular surface by orthopedist, and the will be coated with random speckles by customize airbrush on interested region before fix on robot system. The cameras of VIC-3D system will capture photos during different flexion angle. After draw test, orthopedist will remove ligaments and expose the articular surface. Coat random speckle on the articular surface. The photo can be reconstructed to the three-dimensional surface in region of interest, and can get the strain in dynamic process.
The dynamic bone surface data will combine with articular surface data, and import the bone model from CT. The thickness of the articular surface can be revealed by the difference between CT model and the articular surface data, and the deformation of the articular surface in dynamic equals the interlaced parts.
The mean thickness of the distal tibial cartilage layer for the three ankle cadavers was 0.82 mm, with the mean surface area 1907.7 mm2; the mean thickness of the proximal talar cartilage layer was 0.85 mm, with the mean surface area 1289.5 mm2. The method was also applied on measuring the influence of subtalar joint arthrodesis. After subtalar arthrodesis, the deformation of ankle joint was getting larger in some particular angle, and the strain of ATFL and the PTFL were also higher.
The method in this study constructed is a helpful tool to understand the interaction between articular surface and the correlated ligaments. Furthermore, the method can be validated computer models, and can be a reference on clinical uses.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:03:16Z (GMT). No. of bitstreams: 1
ntu-102-R00548046-1.pdf: 4218185 bytes, checksum: 6f712aa3e8fb7c1f48db877149239b43 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents第一章 緒論 1
第一節 研究動機 1
第二節 踝關節之功能解剖構造 2
一、 骨骼系統 2
二、 韌帶系統 5
三、 肌肉組織 6
第三節 距下關節融合術 7
一、 關節炎之傷害與踝關節炎的發生 7
二、 距下關節融合術 8
三、 距下關節骨融合術後影響 10
第四節 關節生物力學量測方法 11
一、 活體研究 11
二、 試體研究 14
三、 機械手臂/六軸力規測試系統 16
第五節 數位影像相關法 18
第六節 研究目的 20
第二章 材料與方法 21
第一節 試體 21
第二節 硬體 23
一、 機械手臂系統(RV-20A, Mitsubishi Electric Corporation, Japan) 23
二、 三維全域變形及應變量測系統(Vic3D, Correlation Solutions Inc., SC, US) 28
第三節 軟體 30
第四節 方法理論 34
一、 座標系統定義 35
二、 機械手臂控制 37
三、 動態過程與應變量測 39
第五節 統計方法 43
第六節 實驗流程 43
第三章 實驗結果 46
第一節 關節軟骨 46
第二節 韌帶應變 53
第三節 前拉測試 57
第四節 距骨傾斜測試 63
第四章 討論 69
第一節 VIC-3D 系統精確度驗證 69
一、 精度驗證 69
二、 確度驗證 70
第二節 韌帶與軟骨之重建 72
第三節 距下關節融合術之影響 73
第四節 誤差來源 74
第五節 未來目標 76
第五章 結論 78
參考資料 80
dc.language.isozh-TW
dc.title以數位影像相關法與機械手臂系統研究距下關節固定術對踝關節面之生物力學影響zh_TW
dc.titleBiomechanics of Articular Surface in Ankle Joint with Subtalar Arthrodesis Using Digital Image Correlation and Robot Systemen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王至弘(Jyh-Horng Wang),林聰穎(Tsung-Ying Lin)
dc.subject.keyword距下關節骨融合術,數位影像相關法,踝關節,機械手臂,zh_TW
dc.subject.keywordSubtalar arthrodesis,Digital Image Correlation,Ankle Joint,Robot,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2013-08-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
4.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved