Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61434
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳尊賢(Zueng-Sang Chen)
dc.contributor.authorTai-Hsiang Huangen
dc.contributor.author黃泰祥zh_TW
dc.date.accessioned2021-06-16T13:02:57Z-
dc.date.available2014-08-07
dc.date.copyright2013-08-07
dc.date.issued2013
dc.date.submitted2013-08-06
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61434-
dc.description.abstract砷汙染土壤栽培水稻,因土壤長期浸水使砷溶出,導致水稻栽培稻米受砷汙染而危及食品安全。研究假說為透過土壤水分管理使土壤達到好氧境況以降低土壤孔隙水砷濃度,以降低稻米砷汙染的風險。本研究針對土壤水分管理方式及不同性質砷汙染土壤,探討土壤水分管理對降低水稻糙米砷濃度之可行性評估;同時探討土壤水分管理對糙米砷物種之影響。本研究進行盆栽試驗,以二林(Er)及關渡(Gd)砷汙染土及五種土壤水分管理方式,創造不同生育時期土壤水分境況進行土壤水分管理,包括(1) 田間慣行操作方式(conventional),維持土壤浸水至水稻之最大分櫱期,曬田一週後復浸水至水稻開花,開花後進行週期性灌溉直到水稻收割前兩週進行曬田;(2) 水稻開花期前維持土壤好氧狀態,開花後保持土壤浸水境況(A/F);(3) 水稻開花期前維持土壤浸水狀態,開花後保持土壤好氧狀態(F/A);(4) 水稻全生長期維持土壤孔隙為水所飽和(saturated)及(5) 水稻全生長期維持土壤浸水狀態(flooding);並以浸水處理組為對照組,比較土壤水分管理在不同水稻生長期間維持土壤好氧狀態以降低糙米砷濃度。田間慣行操作方式可降低Gd土壤糙米砷濃度,在Er土壤中則無法達到效果,為Gd及Er土壤排水性質差異所致(p<0.05)。在A/F及水飽和處理在水稻開花前維持土壤好氧境況,可降低糙米砷濃度及減輕水稻砷毒害徵狀。土壤水分管理可降低土壤砷濃度及水稻吸收,降低水稻根部砷濃度(p<0.05),但無法降低水稻地上部砷濃度。土壤水分管理顯著改變水稻糙米砷物種濃度及組成,在田間慣行操作方式、F/A及浸水處理,糙米雙甲基砷(DMA)濃度與總砷濃度呈顯著正相關(p<0.05);在A/F及水飽和處理,糙米砷物種以無機砷為主,約佔總砷濃度60-100%。以國人稻米消費量為基準計算無機砷攝取量,未超出WHO之每週容許攝取量15 μg/每公斤體重。砷汙染土壤種植水稻,A/F及水飽和處理較持續浸水栽培可降低糙米砷濃度,為本試驗推薦之土壤水分管理方法。zh_TW
dc.description.abstractRice (Oryza sativa L.) is efficient to translocate arsenic to the grain. In the arsenic contaminated paddy field, arsenic is reduced and mobilized in the submerged condition. Thus, the potential risk of food safety increased when rice grown in the As-contaminated paddy soil. The solubility of arsenic is decreased in the aerobic soil condition while soil drainage is applied. The aims of the study are (1) to mitigate the arsenic concentration in the brown rice grown in two arsenic contaminated soils with soil water managements, and (2) to investigate the arsenic species in the brown rice under soil water managements. The pot experiment conducted with Er and Gd contaminated soil, and with five soil water managements including, (1) conventional treatment : drainage for one week at the rice maximum-tiller-number stage and keep water head at 3-5 cm depth to the flowering stage, and followed by intermittent irrigation; (2) aerobic before flowering treatment (A/F), keep soil aerobic condition before flowering stage, and then keep water head at 3-5 cm depth in the resting cultivation; (3) aerobic after flowering treatment (F/A), keep water head at 3-5 cm depth before flowering stage and then keep soil aerobic in the resting cultivation; (4) water saturated treatment, maintain the soil pore saturated with water and no water ponded on the soil surface; and (5) flooding treatment, keep the water head at 3-5 cm depth during the whole cultivation period. The flooding treatment serves as control, to investigate the effect of soil drainage at different vegetation period on mitigating the brown rice arsenic. Based on the characteristics of soil drainage in Gd and Er soils, the arsenic concentration in the brown rice was found decreased in conventional treatment in the Gd soils rather than in the Er soil. The arsenic toxicity happened to the paddy rice was reduced in A/F and water saturated treatments (p<0.05), and the arsenic concentration of the brown rice was also decreased. The ratio of arsenic species content in the brown rice depends on soil water managements, the DMA concentration is increased with the arsenic concentration in the brown rice under the conventional, F/A and flooding treatments (p<0.05). While inorganic arsenic was found dominant in the brown rice of the A/F and water saturated treatments, and which contributed 60-100% of the arsenic concentration in the brown rice. Provisional tolerance weekly intake of inorganic arsenic of the treatments in this study was all met the WHO standard of 15 μg/kg (body weight). The A/F and water saturated treatment mitigate the total arsenic concentration of brown rice (p<0.05), which are recommended to the application in the field.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:02:57Z (GMT). No. of bitstreams: 1
ntu-102-R00623002-1.pdf: 2596082 bytes, checksum: 35b41b7110f87d69fa9d11a6997968e9 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要....................................................i
英文摘要...................................................ii
目錄……………………………………………………………………………………iv
圖目錄…………………………………………………………………………………vi
表目錄 ………………………………………………………………………………viii
第一章 前言..............................................1
第二章 文獻回顧 ...........................................4
2.1 砷的化學形態.........................................4
2.2 環境中砷的流佈.......................................5
2.3 稻米及水稻生長發育與田間栽培方式........................7
2.4 土壤砷的生物有效性 ..................................8
2.4.1 土壤質地 ..........................................8
2.4.2 土壤pH及Eh值........................................8
2.4.3 土壤無定形與結晶形物質.................................9
2.4.4 土壤有機物.........................................10
2.5 砷汙染土壤水分管理技術...............................12
2.5.1 水田及旱田土壤的差異.................................12
2.5.2 水分管理與操作方式...................................12
2.5.3 曬田..............................................13
2.5.4 土壤水分週期性乾溼交替..............................14
2.5.5 作畦栽培..........................................14
2.5.6 土壤水飽和境況....................................14
2.6 砷在土壤及水稻植體間的傳輸...........................16
2.6.1 水稻砷酸的吸收與傳輸................................16
2.6.2 水稻亞砷酸的吸收與傳輸..............................17
2.6.3 水稻有機砷的吸收與傳輸..............................18
2.6.4 水稻吸收與傳輸無機砷及有機砷物種......................19
第三章 材料與方法.......................................20
3.1 試驗土壤..........................................20
3.1.1 關渡平原土壤......................................20
3.1.2 二林土系.........................................21
3.2 土壤物理化學性質分析...............................22
3.2.1 土壤質地:吸管法...................................22
3.2.2 土壤pH值:玻璃電極法...............................22
3.2.3 土壤電導度........................................23
3.2.4 土壤有機碳:濕式氧化法.............................23
3.2.5 土壤游離鐵鋁含量...................................23
3.2.6 土壤無定形鐵鋁含量..................................23
3.2.7 土壤微量元素及重金屬含量-王水消化法...................23
3.2.8 土壤砷型態的劃分..................................24
3.3 盆栽試驗..........................................26
3.3.1 栽培條件..........................................26
3.3.2 土壤水分管理處理.....................................27
3.3.3 土壤氧化還原電位及pH值測定...........................31
3.3.4 土壤孔隙水化學分析...................................31
3.4 水稻植體前處理與化學分析.............................32
3.4.1 總砷濃度:糙米、稻稈樣品:H2O2/HNO3...................32
3.4.2 總砷濃度:稻殼、稻根樣品:HClO4/HNO3..................32
3.4.3 水稻根部及根鐵膜分析.................................33
3.4.4 砷物種檢量線配置....................................33
3.4.5 糙米砷物種分析......................................34
3.5 統計分析...........................................36
第四章 結果與討論.........................................37
4.1 土壤基本性質.......................................37
4.1.1 二林土系土壤........................................37
4.1.2 關渡土系土壤.......................................37
4.2 土壤砷型態的劃分....................................40
4.3 水稻生長期土壤孔隙水監測.............................43
4.3.1 土壤氧化還原電位....................................43
4.3.2 土壤孔隙水砷與鐵濃度變化............................48
4.3.3 土壤孔隙水錳濃度變化.................................56
4.3.4 土壤孔隙水矽濃度變化...............................58
4.3.5 土壤孔隙水DOC濃度變化..............................60
4.4 水稻產量及糙米、稻稈及稻殼砷濃度.......................62
4.4.1 水稻稻米及稻稈產量..................................62
4.4.2 糙米(brown rice)砷濃度............................67
4.4.3 稻稈(straw)及稻殼(husk)砷濃度......................71
4.4.4 土壤水分管理及土壤砷的生物有效性......................74
4.5 砷在土壤與水稻植體間的傳輸...........................77
4.5.1 水稻根部鐵膜(iron plaque)砷與鐵濃度.................77
4.5.2 水稻根部砷濃度.....................................82
4.5.3 砷在土壤水稻植體間傳輸...............................84
4.6 糙米砷物種分析.....................................87
4.6.1 砷物種分析方法之回收率...............................87
4.6.2 土壤水分管理方式改變糙米砷物種分布.....................92
4.6.3 糙米砷濃度與砷物種組成...............................97
第五章 結論...........................................105
第六章 參考文獻........................................106
附錄………………………………………………………………………………….....................120
dc.language.isozh-TW
dc.subject無定形鐵氧化物質zh_TW
dc.subject砷物種zh_TW
dc.subject水稻zh_TW
dc.subject每週容許攝取量zh_TW
dc.subject糙米zh_TW
dc.subject土壤水分管理zh_TW
dc.subject砷汙染土壤zh_TW
dc.subjectsoil water managementen
dc.subjectpaddy riceen
dc.subjectprovisional tolerance weekly intakeen
dc.subjectbrown riceen
dc.subjectarsenic speciesen
dc.subjectamorphous iron oxideen
dc.subjectarsenic contaminated soilen
dc.title利用土壤水分管理降低兩種砷汙染土中糙米砷濃度zh_TW
dc.titleUsing Soil Water Management to Decrease the Arsenic Content of Brown Rice Grown in the Two Arsenic Contaminated Soilsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李達源,王尚禮,許正一
dc.subject.keyword水稻,土壤水分管理,砷汙染土壤,無定形鐵氧化物質,砷物種,糙米,每週容許攝取量,zh_TW
dc.subject.keywordpaddy rice,soil water management,arsenic contaminated soil,amorphous iron oxide,arsenic species,brown rice,provisional tolerance weekly intake,en
dc.relation.page134
dc.rights.note有償授權
dc.date.accepted2013-08-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved