請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61433
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林坤佑(Kun-You Lin) | |
dc.contributor.author | Yao-Chia Yang | en |
dc.contributor.author | 楊燿嘉 | zh_TW |
dc.date.accessioned | 2021-06-16T13:02:56Z | - |
dc.date.available | 2013-08-20 | |
dc.date.copyright | 2013-08-20 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-06 | |
dc.identifier.citation | [1] IEEE p802.15-05-0596-01-003c.pdf
[2] B. Razavi, RF Microelectronics, ed., Prentice Hall, October, 2011. [3] J.-H. Tsai, “Design of 1.2 V broadband, high data-rate MMW CMOS I/Q modulator and demodulator using modified Gilbert-cell mixer,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1350–1360, May 2011. [4] Zhang, F., Skafidas, E., Shieh, W., Yang, B., Wicks, B.N. and Liu,Z., “A 60-GHz Double-Balanced Mixer for Direct Up-Conversion Transmitter on 130-nm CMOS”, Compound Semiconductor Integrated Circuits Symposium, pp. 1–4, 2008. [5] P.-S. Wu, C.-H. Wang, C.-S. Lin, K.-Y. Lin, and H. Wang, “A compact 60 GHz integrated up-converter using miniature transformer couplers with 5 dB conversion gain,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 641–643, Sep. 2008. [6] M. Kraemer et al, “A dual-gate 60GHz direct up-conversion mixer with active IF balun in 65nm CMOS,” IEEE International Conference on Wireless Information Technology and Systems, pp.1-4, 2010. [7] T.-M. Tsai and Y.-S. Lin, “15.1 mW 60 GHz up-conversion mixer with 4.5 dB gain and 57.5 dB LO-RF isolation,” Electronics Letters, vol. 48, issue 14 [8] A. P. M. Boers and N. Weste, “A 60 GHz transmitter in 0.18 silicon germanium,” in Proc. Wireless Broadband and Ultra Wideband Communications, Aug. 27–30, 2007, p. 36. [9] J. Brinkhoff, F. Lin, K. Kang, D.-D. Pham and C.-H. Heng, “A 60 GHz heterodyne quadrature transmitter with a new simplified architecture in 90nm CMOS,” in 2010 IEEE Asian Solid-State Circuits Conference, 2010, pp.1 – 4. [10] S. Gunnarsson et al., “Single-chip 60 GHz transmitter and receiver MMICs in a GaAs mHEMT technology,” in IEEE MTT-S Int. Dig., Jun. 2006, pp. 801–804 [11] F. Zhang et al., “A 60-GHz direct-conversion transmitter in 130-nm CMOS,” in 2008 IEEE Asian Solid-State Circuits Conference, 2008, pp.137 – 40. [12] M. Karkkainen, M. Varonen, D. Sandstrom, and Kari A. I. Halonen, “60-GHz Receiver and Transmitter Front-Ends in 65-nm CMOS,” in IEEE MTT-S Int. Microwave Symp. Dig., 2009, pp. 577–580. [13] M. Kumar, R. J. Menna, and H. Huang, “Broad-band active phase shifters using dual gate MESFET,” IEEE Trans. Microw. Theory Tech., vol. MTT-29, no. 10, pp. 1098–1101, Oct. 1981. [14] Y. Gazit and H. C. Johnson, “A continuously-variable Ku-band phase/amplitude control module,” in IEEE MTT-S Int. Microwave Symp. Dig., 1981, pp. 436–438. [15] J. Grajal, J. Gismero, M. Mahfoudi, and F. A. Petz, “A 1.4–2.7-GHz analog MMIC vector modulator for a crossbar beamforming network,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 10, pp. 1705–1714, Oct. 1997. [16] S. J. Kim and N. H. Myung, “A new active phase shifter using a vector sum method,” IEEE Microw. Guided Wave Lett., vol. 10, no. 6, pp. 233–235, Jun. 2000 [17] P.-Y. Chen, T.-W. Huang, H. Wang, Y.-C. Wang, C.-H. Chen, and P.-C. Chao, “K-band HBT and HEMT monolithic active phase shifters using vector sum method,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1414–1424, May 2004. [18] 吳佩憙,微波及毫米波平衡不平衡轉換器之設計及其應用,國立台灣大學電信工程學研究所博士論文,2006年 [19] D. Helms, D. McPherson, J. Kennedy, G. Porter, and J. Komiak, “Distributed vector modulation for broadband phase control,” GaAc IC symp., pp. 255-258, Nov. 1989. [20] P. Chen, T. Huang, H. Wang, Y. Wang, C. Chen, and P. Chao, “K-band HBT and HEMT monolithic active phase shifters using vector sum method,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1414–1424, May 2004. [21] P.-J. Peng, J.-C. Kao, and H. Wang, “A 57-66 GHz Vector Sum Phase Shifter with Low Phase/Amplitude Error Using a Wilkinson Power Divider with LHTL/RHTL Elements,” in IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Oct. 2007, pp. 1-4. [22] K.-J. Koh and G. M. Rebeiz, “0.13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Nov. 2007. [23] M.-D. Tsai, A. Natarajan, “60GHz passive and active RF-path phase shifters in silicon,” in IEEE RFIC Symp. Dig., Jun. 2009, pp. 233-226. [24] P. B. Vadivelu, P. Sen, S. Sarkar, D. Dawn, S. Pinel, and J. Laskar, “Integrated CMOS mm-wave phase shifters for single chip portable radar,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 565-568. [25] P.-S. Wu, H.-Y. Chang, M.-F. Lei, B.-J. Huang, H. Wang, C.-M. Yu, and J. G. J. Chern, “A 40-74 GHz amplitude/phase control MMIC using 90-nm CMOS technology,” in European Microwave Integrated Circuits Conference, Oct. 2007, pp. 115-118. [26] K.-J. Kim, K. H. Ahn, T. H. Lim, H. C. Park, and J.-W. Yu,“A 60 GHz wideband phased-array LNA with short-stub passive vector generator,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 11, pp. 628-630, Nov. 2010. [27] B. Biglarbegian, M. R. Nezad-Ahmadi, M. Fakharzadeh, and S. SafaviNaeini, “Millimeter-Wave reflective-type phase shifter in CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp.560–562, Sep. 2009. [28] W.-H. Lin, W.-L. Chang, J.-H. Tsai, and T.-W. Huang, “A 30-60 GHz CMOS sub-harmonic IQ de/modulator for high data-rate communication system applications,” in IEEE Radio and Wireless Symposium Dig., Jan. 2009, pp. 462-465. [29] Y. Hamada, K. Maruhashi, M. Ito, S. Kishimoto, T. Morimoto, K. Ohata, “A 60-GHz-band compact IQ modulator MMIC for ultra-high-speed wireless communication,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2006, pp. 1701-1704. [30] J.-H. Tsai, T.-W. Huang, “35–65 GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications” IEEE Trans. Microw. Theory Tech.,vol 55, no. 10, pp. 2075-2085, Oct. 2007. [31] H.-Y. Chang, “Design of broadband highly linear IQ modulator using a 0.5 μm E/D-PHEMT process for millimeter-wave applications,” IEEE Microw. Compon. Lett., vol. 18, no. 7, pp. 491-493, Jul. 2008. [32] C.-C. Kuo, Z.-M. Tsai, J.-H. Tsai and H. Wang, “A 71-76 GHz CMOS variable gain amplifier using current steering technique,” in IEEE Radio Frequency Integrated Circuits Symposium, Apr. 2008, pp. 609-612. [33] F. Ellinger, U. Jorges, U. Mayer and R. Eickhoff, “Analysis and compensation of phase variations versus gain in amplifiers verified by SiGe HBT cascode RFIC,” IEEE Transactions on Microwave Theory and Techniques, vol.57. no. 8, pp.1885-1894, Aug. 2009. [34] P.-S. Wu, H.-Y. Chang, M.-F. Lei, B.-J. Huang, H. Wang and Cheng-Ming Yu, “A 40-74 GHz amplitude/phase control MMIC using 90-nm CMOS technology,” in IEEE European Microwave Integrated Circuit Conference, 8-10 Oct, 2007, pp. 115-118 [35] D. M. Pozar, Microwave Engineering [36] B.-W. Min and G. M. Rebeiz, “Single-ended and differential Ka-band BiCMOS phased array front-ends,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp.2239-2250, Oct. 2008. [37] 謝家瑜,60-GHz 緩衝放大器與低相位變異可變增益放大器之研製,國立台灣大學電信工程學研究所碩士論文,2010年 [38] C.-C. Kuo, Z.-M. Tsai, J.-H. Tsai, and H. Wang, “A 71–76 GHz CMOS variable gain amplifier using current steering technique,” inProc. IEEE Radio Freq. Integr. Circuits Symp., Jun. 2008, pp. 609–612. [39] http://www.agilent.com [40] “Sonnet User’s Manual, Release 11,” Sonnet Software, Inc., March 2007, Syracuse, NY. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61433 | - |
dc.description.abstract | 本碩士論文探討應用於微波及毫米波頻段發射器與向量疊加式相移器之研究。
論文的第一部分描述一個使用65奈米先進金氧互補半導體製程之60 GHz發射器電路。此發射器當中的混頻器,設計上除了考慮系統偏壓上的設定、外差(heterodyne)發射器架構的頻帶規劃,還有系統線性度上的考量。本論文採用了一種根據Gilbert-cell混頻器(Gilbert-cell mixer)的架構,但轉導級以反向器型態放大器(inverter-type amplifier)實現,進而同時達到提供增益與減輕Gilbert-cell混頻器電壓空間的負擔。量測結果顯示在4.32-8.64 GHz頻帶內有-2 dB的轉換增益,輸出功率1 dB壓縮點在操作頻帶內都能大於-7 dBm,LO-to-RF的隔絕也能大於45 dB。而發射器的量測結果顯示頻帶內能有30 dB的小訊號功率增益以及最大輸出功率能大於12.8 dBm。 再者,我們使用90奈米CMOS製程設計一個57 ~ 64 GHz的向量疊加式相移器。此電路希望藉由主動式的架構,使得傳送信號的增益提高。此外,透過相位補償式可變增益放大器,使得基頻控制電壓產生的相位誤差降低,藉此降低信號誤差,使得此調變器不需經過校準即可有較好的信號品質。量測結果顯示在57-64 GHz頻帶內維持0.5 dB的最大小訊號功率增益,以及在57 ~ 64 GHz間,均可達到360度的相移效果,以及20 dB的振幅控制。 | zh_TW |
dc.description.abstract | In this master thesis, we discuss the researches of transmitter and vector-sum phase shifter for microwave or millimeter-wave applications.
In the first place, we present a V-band heterodyne transmitter, realized in 65-nm CMOS process. Among the heterodyne transmitter, the proposed up-conversion mixer is designed in consideration of capable biasing in the system, spectrum planning and sufficient linear output power for the latter stages. The up-conversion mixer is therefore adopts conventional Gilbert-cell mixer topology with modified trans-conductance stage (inverter-type amplifier). It effectively provides the extra trans-conductance in the same biasing and in the meanwhile relaxes the headroom in the conventional Gilbert-cell topology. It is measured with -2-dB conversion gain from 4.32 GHz to 8.64 GHz. Output 1-dB compression power is guaranteed larger than -7 dBm inside the operational bandwidth. LO-to-RF isolation is also larger than 45 dB. Moreover, the proposed heterodyne transmitter is measured with 30-dB small signal gain and minimum 12.8-dBm saturation power from 57 GHz to 66 GHz. On the other hand, we propose a V-band vector-sum phase shifter in 90-nm CMOS process. This phase shifter is expected to increase the insertion gain with insertion of active topology. Also, we adopt the low phase-variation VGA to minimize the unexpected phase error, and therefore obtain the accurate signal without complex calibration works. It is measured with 0.5-dB small signal gain from 57 GHz to 64 GHz. 360° continuous phase control and 20-dB amplitude control are also guaranteed in the measurement. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:02:56Z (GMT). No. of bitstreams: 1 ntu-102-R00942027-1.pdf: 6857868 bytes, checksum: 69eccd8fdb9bcbc7df7ba112b6c60dc8 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xviii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 2 1.2.1 V-band up-conversion mixer 2 1.2.2 Vector-sum phase-shifter 4 1.3 Contributions 5 1.4 Dissertation Organization 6 Chapter 2 Fundamental Theory of Mixer 8 2.1 Theory of mixing operation 8 2.1.1 Nonlinear or Time-varying Systems 8 2.1.2 Their Role in the Transceiver 10 2.2 Performance Parameters 10 2.2.1 Conversion Gain 11 2.2.2 Port-to-Port Isolation 13 2.2.3 Noise Figure 15 2.2.4 Linearity 17 2.3 Basic Mixer Forms 19 2.3.1 Single-ended Mixers 20 2.3.2 Single-balanced Mixer and Double-balanced Mixer 21 2.4 Modulator 22 Chapter 3 A V-band Transmitter Chain in 65-nm CMOS 24 3.1 Introduction 24 3.2 Transmitter Architecture and System-level Considerations 25 3.3 Design of Up-conversion Mixer 27 3.3.1 Introduction 27 3.3.2 Previously Published Works 28 3.3.3 Design Methodology 30 3.3.4 Simulation Results 48 3.3.5 Measurement Results 59 3.3.6 Discussion and Summary 68 3.4 Experimental Setup and Measurement 72 3.4.1 Testing of Buffer Amplifier 72 3.4.2 Testing of Power Amplifier 74 3.4.3 Testing of Transmitter Chain 76 3.5 Discussion and Summary 88 Chapter 4 A V-band Vector-sum Phase Shifter 92 4.1 Introduction 92 4.2 Previously Published Works 92 4.3 Design Methodology 95 4.3.1 Design of Quadrature Power Divider 96 4.3.2 Design of 0°/180° Phase-shifter 103 4.3.3 Design of Low Phase-variation Variable-gain Amplifier 107 4.3.4 Design of Power Combiner 114 4.4 Simulation Results 115 4.5 Measurement Results 124 4.6 Debug and Discussion 133 4.7 Summary 141 Chapter 5 Conclusions 144 REFERENCE 146 | |
dc.language.iso | en | |
dc.title | V頻段發射器與向量疊加式相移器之研究 | zh_TW |
dc.title | Research on V-band Transmitter and Vector-sum Phase-shifter | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃天偉(Tian-Wei Huang),蔡政翰(Jeng-Han Tsai),張鴻埜(Hong-Yeh Chang) | |
dc.subject.keyword | 混頻器,向量疊加式相移器,低相位變異可變增益放大器,發射器,V頻段,CMOS, | zh_TW |
dc.subject.keyword | Mixer,Vector-sum phase shifter,low phase-variation variable-gain amplifier (VGA),transmitter,V-band,CMOS, | en |
dc.relation.page | 150 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-06 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 6.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。