請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61426完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂東武(Tung-Wu Lu) | |
| dc.contributor.author | Cheng-Chung Lin | en |
| dc.contributor.author | 林正忠 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:02:47Z | - |
| dc.date.available | 2018-08-17 | |
| dc.date.copyright | 2013-08-17 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-06 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61426 | - |
| dc.description.abstract | 精確量測脊椎於功能性動作時的椎體運動將有助於對脊椎功能之了解與許多臨床醫療與研究之應用。雖然許多量測技術已被提出且用來量測椎體運動,至今能夠在符合生理荷重的情況下,以非侵入式的方法精確量測三維、動態椎間運動的方法仍然很有限。近年來,少數基於椎骨模型之二維對三維影像契合方法被提出,但是這些關節運動量測方法仍有其精度上或使用上的侷限性,且這些方法之精確度從未在相同的實驗平台上接受評估與比較。
因此,本研究建構並評估比較四種主要的二維對三維影像契合之方法(基於投影的方法),包含了STS (表面模型對單平面X光),VTS (實體模型對單平面X光),STB (表面模型對雙平面X光),VTB (實體模型對雙平面X光)等四種方法。並開發一整合VTS與椎骨模型碰撞偵測與約束限制之方法,進一步增加實體模型對單平面X光之契合方法的精確度。基於經實驗驗證的影像契合方法,進一步將其運用於量測正常受試者之頸椎在屈曲/伸展、側彎和軸向旋轉等三種功能性動作時的三維椎體運動。另一方面,除了基於投影的影像契合技術,本研究另發展並驗證一影像切片對實體模型的對位方法,該方法整合三維靜態核磁共振影像與一創新的單切片、即時的徑向FLASH核磁共振影像。 透過實驗驗證評估,VTB被證明具有最高的精確度,VTS可達到與該方法接近的旋轉精度,STB可達到與該方法接近的位移精度,而STS則擁有最低的精確度。整合VTS與椎骨模型碰撞限制的方法成功降低了椎間運動量測時的出影像平面位移誤差,同時保持其他自由度的量測精確度。運用上述開發之影像契合方法,正常人受試者在執行三種不同頸椎功能性動作時的活體三維椎間運動可以被精確測量與分析。影像切片對實體模型的對位方法的精確度與重覆性,亦透過實驗之驗證評估而得到了確立,該方法在可避免輻射照射的優勢下,將有望成為評估三維椎體運動時的一項非侵入式且低風險量測工具。 | zh_TW |
| dc.description.abstract | Accurate measurement of in vivo vertebral kinematics of the spine during functional activities is essential for better understanding of its function and for many clinical applications. While several techniques have been developed to measure the spinal kinematics, not many allow for non-invasive measurement of the 3D and dynamic intervertebral motion under physiological weight-bearing conditions. Although a few model-based 2D-to-3D registration methods are available in measuring 3D vertebral motion recently, their performance has not been evaluated under the same experimental protocol. The existing methods are also limited either in their accuracy or difficulties in implementation.
Four major types of 2D-to-3D registration methods (projection-based methods) were established and experimentally evaluated, namely STS (surface, single-plane), VTS (volumetric, single-plane), STB (surface, bi-plane) and VTB (volumetric, bi-plane). A new single-plane fluoroscopy-to-CT registration method (VTS) integrated with intervertebral anti-collision constraints was proposed. The validated registration methods were then applied to measure the 3D motion of cervical vertebrae during the flexion/extension, lateral bending and axial rotation in normal subjects. In addition to the projection-based registration methods, a new slice-to-volume registration method that integrated 3D static MRI volumes of the vertebrae with an advanced single-slice, real-time radial FLASH MRI was developed and experimentally evaluated. It was concluded that (a) The VTB was found to have the highest precision, comparable with the VTS in rotations, and the STB in translations. The STS had the lowest precision. (b) The fluoroscopy-to-CT registration (i.e. VTS) integrated with anti-collision constraints successfully reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five degrees-of-freedom more or less unaltered. (c) With the validated volumetric model-based registration methods, the 3D kinematics of the sub-axial cervical spine during activities had been accurately measured. (d) With the accuracy and repeatability achieved, and without the use of ionizing radiation, the slice-to-volume registration combining the real-time radial FLASH MR imaging is potential to be a low-risk, valuable tool for studying 3D vertebral kinematics non-invasively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:02:47Z (GMT). No. of bitstreams: 1 ntu-102-F96548021-1.pdf: 8304136 bytes, checksum: 7fe8157c12ba802668fb66a36c7b0cc0 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 ii
Abstract iv Acknowledgements vi Table of Content vii List of Figure xii List of Table xix Chapter 1. Introduction 1 1.1 Measurements of Spine Kinematics 1 1.1.1 Spine Kinematics 1 1.1.2 In Vitro Measurements 2 1.1.3 In Vivo Measurements 3 1.1.4 Soft Tissue Artifacts 4 1.2 In Vivo Measurements of Intervertebral Motion 5 1.2.1 Radiological Measurement 5 1.2.2 Non-Radiological Measurement 7 1.3 Image Registration Methods 7 1.3.1 Initial Development of Projection-Based Registration Method 8 1.3.2 Surface Model-based Method 9 1.3.3 Volumetric Model-based Method 10 1.3.4 Model-based Registration via Bi-Plane Fluoroscopy 11 1.3.5 The Importance of Comparison of the Projection-based Registration Methods 13 1.3.6 Anti-Collision Constraints 13 1.4 Slice-to-Volume Registration Methods 15 1.4.1 FluoroCT 15 1.4.2 Real-Time MRI 16 1.4.3 Cine Phase Contrast MRI 16 1.4.4 Advanced Real-time MRI Technique 17 1.5 Aims and Scope of the Dissertation 17 Chapter 2. Development and Establishment of the Projection-based Registration Methods for Measuring In vivo Intervertebral Kinematics 20 2.1 Volumetric Model-based Registration Method Using Single-Plane Fluoroscopy 20 2.1.1 Overview 20 2.1.2 System Calibration of Single-Plane Fluoroscopy 22 2.1.3 Creation of Vertebral Model 24 2.1.4 Generation of DRR 26 2.1.5 Similarity Measure: Weight Edge-Marching Score 29 2.1.6 Optimization 32 2.1.7 Graphical User Interface Program 33 2.2 Surface Model-based Registration Method Using Single-Plane Fluoroscopy 35 2.2.1 Overview 35 2.2.2 Creation of Surface Model 36 2.2.3 Generation of DRP 37 2.2.4 Similarity Measure: Contour Difference (CD) 38 2.3 Model-based Registration Method Using Bi-Plane Fluoroscopy 41 2.3.1 Calibration of Bi-plane Fluoroscopy system 43 2.3.2 Similarity Measure 45 2.3.3 Graphical User Interface Program 46 Chapter 3. Systematic Evaluation of Projection-based Registration Methods via Single- and Bi-Plane Fluoroscopy 48 3.1 In Vitro Experiment Using Porcine Vertebrae 48 3.1.1 Overview 48 3.1.2 Specimen Preparation 51 3.1.3 System Calibration 53 3.1.4 Fluoroscopy Imaging 53 3.2 Registration Methods 54 3.3 Data Analysis 56 3.3.1 Anatomical Coordinate System of Vertebra 56 3.3.2 Attitude Representation 58 3.3.3 Gold Standard Pose 61 3.3.4 Error Determination and Statistics 63 3.3.5 Capture Range Analysis 64 3.4 Results 65 3.4.1 Accuracy and Precision of Methods 65 3.4.2 Capture Range 70 3.5 Discussion 73 3.5.1 Surface Model-based Registration Using Single-Plane Fluoroscopy 73 3.5.2 Surface Model-based Registration Using Bi-Plane Fluoroscopy 77 3.5.3 Volumetric Model-based Registration using Single-Plane Fluoroscopy 78 3.5.4 Volumetric Model-based Registration using Bi-Plane Fluoroscopy 80 3.5.5 Capture Range 82 3.5.6 Study Limitations 82 Chapter 4. Development of a Single-Plane Fluoroscopy-to-CT Registration Method Integrated with Geometrical Anti-Collision Constraints1 84 4.1 Overview 84 4.2 Collision Detection 86 4.3 Weighted Edge-Matching with Anti-Collision Method 89 4.4 Three Variations of WEMAC Method 91 4.5 Optimization 92 4.6 Preliminary Test of Penalty Method 95 Chapter 5. Experimental Evaluation of the WEMAC Method1 97 5.1 Overview 97 5.2 In Vitro Experiment 99 5.2.1 Specimen Preparation 99 5.2.2 Image Data Collection 100 5.3 Error Evaluation 103 5.3.1 Gold Standard Pose 103 5.3.2 Error Determination and Statistics 104 5.4 Results 104 5.4.1 WEMS 104 5.4.2 WEMAC with three variations 105 5.5 Discussion 109 5.5.1 Validation Experiment 109 5.5.2 Development of WEMAC 110 5.5.3 Collision-Avoidance Maneuver 112 Chapter 6. In Vivo Measurement of 3D Spinal Intervertebral Motion 114 6.1 Materials and Methods 114 6.1.1 Subjects 114 6.1.2 Fluoroscopy Imaging 114 6.1.3 Model-based Registration 115 6.1.4 Kinematics Analysis 116 6.1.5 Ligament Length Analysis 117 6.1.6 Statistics Analysis 119 6.2 Results 120 6.2.1 Range of Motion 120 6.2.2 Ratio of Coupled Motion 126 6.2.3 Continuous Intervertebral Motion 128 6.2.4 Functional Axis 132 6.2.5 Elongation of Ligaments 136 6.3 Discussion 145 6.3.1 Range of Motion 146 6.3.2 Influence of Posture 147 6.3.3 Ratio of Coupled Motion 149 6.3.4 Functional Axis 150 6.3.5 Elongation of Ligaments 151 6.3.6 Study Limitations 153 Chapter 7. Development of a Slice-to-Volume Registration Method Based on Real-time MRI 154 7.1 Slice-to-Volume Registration 154 7.1.1 Overview 154 7.1.2 MR Imaging 156 7.1.3 Vertebral Model Construction 156 7.1.4 Generation of Reformed Slice 158 7.1.5 Similarity Measures 160 7.1.6 Optimization 164 7.1.7 Multi-segment Registration with Anti-collision Constraints 165 7.2 In Vitro Experimental Evaluation 167 7.2.1 Specimen Preparation 167 7.2.2 Image Acquisition 169 7.2.3 Registration with Five Similarity Measures 170 7.2.4 Error Evaluation 171 7.3 Repeatability Study 172 7.4 Results 175 7.5 Discussion 187 Chapter 8. Conclusions and Suggestions 193 8.1 Conclusions 193 8.1.1 Evaluation and Comparison of four Major Types of Projection-based Registration Methods 193 8.1.2 Development of a Single-Plane Fluoroscopy-to-CT Registration Method Integrated with Geometrical Anti-Collision Constraints 194 8.1.3 In Vivo Three-dimensional Kinematics of Cervical Spine 195 8.1.4 Development of the Slice-to-Volume Registration Method Using Advanced Real-Time radial FLASH MRI 196 8.2 Suggestions and Further Studies 196 8.2.1 Volumetric Model-based Registration Methods 196 8.2.2 Registration Method Integrated with Anti-collision Constraints 197 8.2.3 Slice-to-Volume Registration Using Real-time MRI 199 8.2.4 Future Applications 200 Bibliography 202 Appendix: Publication 218 (A) Refereed Journal Article 218 (B) Proceeding Article and Conference Presentations 219 (C) Title Pages of the Published Journal Papers 222 | |
| dc.language.iso | en | |
| dc.subject | 動態X光 | zh_TW |
| dc.subject | 功能性動作 | zh_TW |
| dc.subject | 二維對三維影像契合 | zh_TW |
| dc.subject | 運動學 | zh_TW |
| dc.subject | 核磁共振 | zh_TW |
| dc.subject | 脊椎 | zh_TW |
| dc.subject | 斷層掃描 | zh_TW |
| dc.subject | functional activities | en |
| dc.subject | Kinematics | en |
| dc.subject | fluoroscopy | en |
| dc.subject | CT | en |
| dc.subject | MRI | en |
| dc.subject | 2D-to-3D registration | en |
| dc.subject | Spine | en |
| dc.title | 開發以醫學影像為基礎之創新技術以量測活體三維椎體運動 | zh_TW |
| dc.title | Development of Novel Medical Image-Based Techniques for In Vivo Measurement of Three-Dimensional Vertebral Kinematics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳中明(Chung-Ming Chen),陳文斌(Weng-Pin Chen),洪景華(Chinghua Hung),施庭芳(Tiffany Ting-Fang Shih) | |
| dc.subject.keyword | 脊椎,運動學,動態X光,斷層掃描,核磁共振,二維對三維影像契合,功能性動作, | zh_TW |
| dc.subject.keyword | Spine,Kinematics,fluoroscopy,CT,MRI,2D-to-3D registration,functional activities, | en |
| dc.relation.page | 228 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 8.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
