請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61419完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張恆華 | |
| dc.contributor.author | Yu-Ju Lin | en |
| dc.contributor.author | 林鈺儒 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:02:38Z | - |
| dc.date.available | 2018-08-09 | |
| dc.date.copyright | 2013-08-09 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-06 | |
| dc.identifier.citation | [1] R. H. Hashemi, W. G. Bradley, and C. J. Lisanti, MRI: the basics: LWW, 2012.
[2] C. Westbrook and C. K. Roth, MRI in Practice: Wiley-Blackwell, 2011. [3] A. Macovski, 'Noise in MRI,' Magnetic Resonance in Medicine, vol. 36, pp. 494-497, 1996. [4] H. Gudbjartsson and S. Patz, 'The Rician distribution of noisy MRI data,' Magnetic Resonance in Medicine, vol. 34, pp. 910-914, 1995. [5] R. D. Nowak, 'Wavelet-based Rician noise removal for magnetic resonance imaging,' Image Processing, IEEE Transactions on, vol. 8, pp. 1408-1419, 1999. [6] L. He and I. R. Greenshields, 'A nonlocal maximum likelihood estimation method for Rician noise reduction in MR images,' Medical Imaging, IEEE Transactions on, vol. 28, pp. 165-172, 2009. [7] R. A. Haddad and A. Akansu, 'A class of fast Gaussian binomial filters for speech and image processing,' Signal Processing, IEEE Transactions on, vol. 39, pp. 723-727, 1991. [8] G. Gerig, O. Kubler, R. Kikinis, and F. A. Jolesz, 'Nonlinear anisotropic filtering of MRI data,' Medical Imaging, IEEE Transactions on, vol. 11, pp. 221-232, 1992. [9] C. Tomasi and R. Manduchi, 'Bilateral filtering for gray and color images,' in Computer Vision, 1998. Sixth International Conference on, 1998, pp. 839-846. [10] M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural network design: Pws Pub. Boston London, 1996. [11] S. S. Haykin, Neural networks: a comprehensive foundation: Prentice Hall Englewood Cliffs, NJ, 2007. [12] R. Hecht-Nielsen, 'Theory of the backpropagation neural network,' in Neural Networks, 1989. IJCNN., International Joint Conference on, 1989, pp. 593-605. [13] TMJD SUPPORT-UK Available: http://www.tmjdsupport.co.uk/apps/photos/photo?photoid=50104250. [14] S. O. Rice, 'Mathematical analysis of random noise-conclusion,' Bell Systems Tech. J., Volume 24, p. 46-156, vol. 24, pp. 46-156, 1945. [15] A. Papoulis and S. U. Pillai, Probability, random variables and stochastic processes: Tata McGraw-Hill Education, 2002. [16] 繆紹綱, '數位影像處理,' Rafael C. Gonzalez & Richard E. Woods. Digital image processing, 2nd ed., Prentice Hall: Pearson Education, Inc, 2003. [17] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB vol. 2: Gatesmark Publishing Tennessee, 2009. [18] R. A. Fisher, S. Genetiker, S. Genetician, G. Britain, and S. Geneticien, Statistical methods for research workers vol. 14: Oliver and Boyd Edinburgh, 1970. [19] A. McKay, 'Distribution of the Coefficient of Variation and the Extended' t' Distribution,' Journal of the Royal Statistical Society, vol. 95, pp. 695-698, 1932. [20] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, 'Textural features for image classification,' Systems, Man and Cybernetics, IEEE Transactions on, pp. 610-621, 1973. [21] C.-M. Pun and M.-C. Lee, 'Rotation-invariant texture classification using a two-stage wavelet packet feature approach,' IEE Proceedings-Vision, Image and Signal Processing, vol. 148, pp. 422-428, 2001. [22] J. Zhang, L. Wang, and L. Tong, 'Feature reduction and texture classification in MRI-Texture analysis of multiple sclerosis,' in Complex Medical Engineering, 2007. CME 2007. IEEE/ICME International Conference on, 2007, pp. 752-757. [23] 賴哲儇, '高光譜影像立方體於特徵空間之三維紋理計算,' 碩士, 國立中央大學, 2009. [24] J. Morlet, G. Arens, E. Fourgeau, and D. Glard, 'Wave propagation and sampling theory-Part I: Complex signal and scattering in multilayered media,' Geophysics, vol. 47, pp. 203-221, 1982. [25] A. Grossmann and J. Morlet, 'Decomposition of Hardy functions into square integrable wavelets of constant shape,' SIAM journal on mathematical analysis, vol. 15, pp. 723-736, 1984. [26] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, 'Image coding using wavelet transform,' Image Processing, IEEE Transactions on, vol. 1, pp. 205-220, 1992. [27] A. S. Lewis and G. Knowles, 'Image compression using the 2-D wavelet transform,' Image Processing, IEEE Transactions on, vol. 1, pp. 244-250, 1992. [28] M. Henke-Reed and S. Cheng, 'Cloth texture classification using the wavelet transform,' The Journal of imaging science and technology, vol. 37, pp. 610-614, 1993. [29] G. Strang and T. Nguyen, Wavelets and filter banks: Wellesley Cambridge Press, 1996. [30] K. Sayood, Introduction to data compression: Morgan Kaufmann, 2012. [31] S. G. Mallat, 'A theory for multiresolution signal decomposition: the wavelet representation,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 11, pp. 674-693, 1989. [32] T. Chang and C.-C. Kuo, 'Texture analysis and classification with tree-structured wavelet transform,' Image Processing, IEEE Transactions on, vol. 2, pp. 429-441, 1993. [33] A. Haar, 'Zur theorie der orthogonalen funktionensysteme,' Mathematische Annalen, vol. 69, pp. 331-371, 1910. [34] H. Gou, A. Swaminathan, and M. Wu, 'Noise features for image tampering detection and steganalysis,' in Image Processing, 2007. ICIP 2007. IEEE International Conference on, 2007, pp. VI-97-VI-100. [35] H. Vafaie and K. De Jong, 'Robust feature selection algorithms,' in Tools with Artificial Intelligence, 1993. TAI'93. Proceedings., Fifth International Conference on, 1993, pp. 356-363. [36] I.-S. Oh, J.-S. Lee, and B.-R. Moon, 'Hybrid genetic algorithms for feature selection,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 26, pp. 1424-1437, 2004. [37] Student, 'The probable error of a mean,' Biometrika, pp. 1-25, 1908. [38] W. G. Baxt, 'Use of an artificial neural network for data analysis in clinical decision-making: the diagnosis of acute coronary occlusion,' Neural computation, vol. 2, pp. 480-489, 1990. [39] J. J. Jiang, M. Zhong, and G. Klein, 'Marketing Category Forecasting: An Alternative of BVAR‐Artificial Neural Networks*,' Decision Sciences, vol. 31, pp. 789-812, 2000. [40] W. G. Baxt, 'Application of artificial neural networks to clinical medicine,' The lancet, vol. 346, pp. 1135-1138, 1995. [41] W. S. McCulloch and W. Pitts, 'A logical calculus of the ideas immanent in nervous activity,' The Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943. [42] J. L. McClelland, D. E. Rumelhart, and P. R. Group, 'Parallel distributed processing,' Explorations in the microstructure of cognition, vol. 2, 1986. [43] K. Levenberg, 'A method for the solution of certain problems in least squares,' Quarterly of applied mathematics, vol. 2, pp. 164-168, 1944. [44] D. W. Marquardt, 'An algorithm for least-squares estimation of nonlinear parameters,' Journal of the Society for Industrial & Applied Mathematics, vol. 11, pp. 431-441, 1963. [45] I. Newton, The Method of Fluxions and Infinite Series: With Its Application to the Geometry of Curve Lines, 1736. [46] M. T. Hagan and M. B. Menhaj, 'Training feedforward networks with the Marquardt algorithm,' Neural Networks, IEEE Transactions on, vol. 5, pp. 989-993, 1994. [47] 羅華強, 類神經網路: MATLAB 的應用: 高立, 2011. [48] I. Jolliffe, Principal component analysis: Wiley Online Library, 2005. [49] K. Pearson, 'LIII. On lines and planes of closest fit to systems of points in space,' The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 2, pp. 559-572, 1901. [50] H. Hotelling, 'Analysis of a complex of statistical variables into principal components,' The Journal of educational psychology, pp. 498-520, 1933. [51] BrainWeb Simulated Brain Database. Available: http://brainweb.bic.mni.mcgill.ca/brainweb. (February 2013) [52] C. D. Lewis, Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting: Butterworth Scientific London,, UK, 1982. [53] M. Stone, 'Cross-validatory choice and assessment of statistical predictions,' Journal of the Royal Statistical Society. Series B (Methodological), pp. 111-147, 1974. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61419 | - |
| dc.description.abstract | 在取得磁振影像的過程中,經常伴隨著隨機雜訊的干擾,進而影響影像的品質,而本研究所使用的雙邊濾波器便為一種廣泛被使用之去雜訊技術,其能有效地去除磁振影像中的隨機雜訊,提升影像品質。但應用此濾波器需要由使用者嘗試輸入各種不同的濾波參數值組合,做參數的最佳化調整,以獲得最佳濾波結果。然而,這種測試過程是十分花費時間的,並且不易得知所重建的影像是否為最佳品質。因此,為了解決此問題,本論文使用磁振影像的特徵資料,結合倒傳遞類神經網路訓練出一個可預測參數之模型,使用此模型得到最佳化雙邊濾波參數值的設定,進而自動化移除腦部磁振影像中的雜訊。本研究應用灰階共生矩陣以及離散小波轉換等方法擷取影像特徵,並使用T檢定方法選取能有效分辨資料差異性的特徵。我們使用一系列T1權重的模擬磁振影像來測試此一自動化去雜訊系統。實驗結果顯示本研究所提的方法能有效地預測參數,並且自動化去除磁振影像中的雜訊。此方法所建立的預測模型,在濾波參數的預測上有良好的準確性,最後獲得的重建影像亦有相當不錯的品質。 | zh_TW |
| dc.description.abstract | The bilateral filter has been widely used in many image processing applications. It is an effective filtering algorithm that can remove the random noise in magnetic resonance (MR) images. However, the bilateral filter requires the end-user to try different combinations of parameter values in order to obtain the optimal filtering results. This testing process is very time-consuming and difficult to know whether the reconstructed images have the optimal quality or not. To solve this problem, this thesis proposes using the MR image features in combined with a back propagation neural network to establish a predictable parameter model. The goal is to use this model to optimize parameters settings and to automate the denoising procedure. We adopt the gray level co-occurrence matrix and the discrete wavelet transform method for image features extraction. The T-test method is then used to select the features that can effectively distinguish characteristics differences in image data. We have used a wide variety of simulated T1-weighted MR images to evaluate the proposed automatic denoising system. The experimental results indicated that the proposed method effectively predicted the bilateral filtering parameters and automatically removed the noise in MR images. In summary, this new method creates a prediction model with high predictive accuracy and produces reconstructed images with good quality both qualitatively and quantitatively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:02:38Z (GMT). No. of bitstreams: 1 ntu-102-R00525051-1.pdf: 2231739 bytes, checksum: 9c641a76ae44994ef8f7096175a0f549 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 ix 符號表 x 第 1 章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 論文架構 3 第 2 章 相關理論 4 2.1 磁振造影介紹 4 2.2 磁振影像雜訊 5 2.3 消除磁振影像雜訊之濾波器 6 2.3.1 高斯濾波器(Gaussian Filter) 8 2.3.2 雙邊濾波器(Bilateral Filter) 9 第 3 章 研究設計 11 3.1 方法流程 11 3.2 特徵擷取 12 3.2.1 影像灰階值之統計運算 13 3.2.2 灰階共生矩陣之紋理特徵 14 3.2.3 小波轉換之能量係數 19 3.3 特徵選取 25 3.3.1 T檢定 25 3.4 雙邊濾波器參數之最佳化測試 27 3.5 類神經網路 28 3.5.1 生物神經元模型 28 3.5.2 類神經元模型 29 3.5.3 類神經網路架構 31 3.5.4 倒傳遞類神經網路 33 第 4 章 實驗結果與討論 40 4.1 實驗說明 40 4.1.1 資料集 40 4.1.2 評估標準 41 4.2 影像特徵選取 42 4.3 預測網路模型之評估 45 4.3.1 K疊交叉驗證法(K-fold cross-validation) 45 4.3.2 預測之參數分析 47 4.4 自動化雙邊濾波之影像評估 49 第 5 章 結論與未來展望 54 5.1 結論 54 5.2 未來展望 55 參考文獻 56 附錄:主成份分析方法 62 | |
| dc.language.iso | zh-TW | |
| dc.subject | 小波轉換 | zh_TW |
| dc.subject | 灰階共生矩陣 | zh_TW |
| dc.subject | 倒傳遞類神經網路 | zh_TW |
| dc.subject | 磁振影像 | zh_TW |
| dc.subject | 雙邊濾波器 | zh_TW |
| dc.subject | T檢定 | zh_TW |
| dc.subject | T-test | en |
| dc.subject | back-propagation neural network | en |
| dc.subject | bilateral filter | en |
| dc.subject | gray level co-occurrence matrix (GLCM) | en |
| dc.subject | discrete wavelet transform | en |
| dc.subject | magnetic resonance image (MRI) | en |
| dc.title | 使用倒傳遞類神經網路於自動化雙邊濾波腦部磁振影像 | zh_TW |
| dc.title | Automatic Bilateral Filtering on Brain Magnetic Resonance Images Using a Back-Propagation Neural Network | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張瑞益,黃乾綱,江明彰 | |
| dc.subject.keyword | 磁振影像,雙邊濾波器,倒傳遞類神經網路,灰階共生矩陣,小波轉換,T檢定, | zh_TW |
| dc.subject.keyword | magnetic resonance image (MRI),back-propagation neural network,bilateral filter,gray level co-occurrence matrix (GLCM),discrete wavelet transform,T-test, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
