Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61412
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉邦鋒
dc.contributor.authorChung-Yao Kaoen
dc.contributor.author高崇堯zh_TW
dc.date.accessioned2021-06-16T13:02:30Z-
dc.date.available2016-08-17
dc.date.copyright2013-08-17
dc.date.issued2013
dc.date.submitted2013-08-06
dc.identifier.citationBibliography
[1] Amazon elastic compute cloud. http://aws.amazon.com/ec2/.
[2] Amazon high performance computing on cloud. http://aws.amazon.com/hpc-applications/.
[3] Amd. http://www.amd.com/.
[4] Amd app acceleration. http://www.amd.com/stream.
[5] J.A. Anderson, C.D. Lorenz, and A. Travesset. General purpose molecular dynamics simulations
fully implemented on graphics processing units. In Journal of Computational Physics,
2008, pages 5342–5359, February 2008.
[6] S. Asano, T. Maruyama, and Y. Yamaguchi. Performance comparison of fpga, gpu and
cpu in image processing. In Field Programmable Logic and Applications, 2009. FPL 2009.
International Conference on, pages 126 –131, 31 2009-sept. 2 2009.
[7] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P.Hanrahan. Brook
for gpus: Stream computing on graphics hardware. In ACM Transactions on Graphics (TOG)
- Proceedings of ACM SIGGRAPH 2004, pages 777–786, August 2004.
[8] G. Chen, G. Li, S. Pei, and B. Wu. Gpgpu supported cooperative acceleration in molecular
dynamics. In Computer Supported Cooperative Work in Design (CSCWD), 2009. 13th
International Conference on, pages 113–118, April 2009.
[9] Cuda. http://www.nvidia.com/content/cuda/cuda-toolkit.html.
[10] G. Giunta, R. Montella, G. Agrillo, and G. Coviello. A gpgpu transparent virtualization
component for high performance computing clouds. In Euro-Par 2010 Parallel Processing,
pages 379–391, September 2010.
[11] Google cloud platform. http://cloud.google.com/.
[12] Gpgpu. http://gpgpu.org/.
[13] Hoopoe. http://www.hoopoe-cloud.com/.
[14] Ibm. http://www.ibm.com/.
[15] Intel. http://www.intel.com/.
[16] Json. http://www.json.org/.
[17] Kepler, next generation cuda compute architecture.
http://www.nvidia.com.tw/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-
Whitepaper.pdf.
[18] Kvm. http://www.linux-kvm.org/.
[19] Network file system. http://nfs.sourceforge.net/.
[20] Nvidia. http://www.nvidia.com/.
[21] Nvidia fermi architecture. http://tinyurl.com/6vdsl4q.
[22] Opencl. http://www.khronos.org/opencl/.
[23] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk,
and Wen-mei W. Hwu. Optimization principles and application performance evaluation of
a multithreaded gpu using cuda. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, PPoPP ’08, pages 73–82, New York, NY,
USA, 2008. ACM.
[24] L. Shi, H. Chen, and J. Sun. vcuda: Gpu-accelerated high-performance computing in virtual
machines. In IEEE International Symposium on Parallel & Distributed Processing, pages
1–11, May 2009.
[25] Using inline ptx assembly in cuda. http://tinyurl.com/866zchu.
[26] Nvidia vgx. http://www.nvidia.com/object/grid-vgx-software.html.
[27] Vincent A. Voelz, Gregory R. Bowman, Kyle Beauchamp, and Vijay S. Pande. Molecular
simulation of ab initio protein folding for a millisecond folder ntl9(1-39). Journal of the
American Chemical Society, 132(5):1526–1528, 2010. PMID: 20070076.
[28] Windows azure, microsoft’s cloud platform. http://www.windowsazure.com/.
[29] Xen. http://xen.org.
[30] C.Y. Yeh, C.Y. Kao, W.S. Hung, C.C. Lin, P. Liu, J.J. Wu, and K.C. Liu. Gpu virtualization
support in cloud system. In 8th International Conference, GPC 2013 and Colocated
Workshops, Seoul, Korea, May 9-11, 2013. Proceedings, pages 423–432, May 2013.
[31] zillians. http://www.zillians.com/.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61412-
dc.description.abstractRecently NVidia proposed their first cloud based GPU architecture called Kepler. One of the key features of Kepler GPU is that it allows multiple user processes to access the GPU {em concurrently}. We use this feature to design a cloud computing system that allow multiple users to share the computing power of a Kepler board anytime, anywhere over the internet. Our system improves the utilization of the Kepler GPU and lowers the cost in providing GPU cloud services. We conduct experiments to evaluate the overhead of our system, and preliminary results indicatse that our system provides convienent services with very little overhead.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:02:30Z (GMT). No. of bitstreams: 1
ntu-102-R00922057-1.pdf: 1186268 bytes, checksum: 4ae111008fe3219355f9d6e9202ac301 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsContents
Acknowledgement i
Chinese Abstract ii
Abstract iii
1 Introduction 1
2 Related works 4
3 System Architecture 9
3.1 GPU Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1 Listener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Code Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 Resource Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.4 Executor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Client Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Server-Client Communication API . . . . . . . . . . . . . . . . . . . . . 11
3.3 System Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 System implementation 14
4.1 GPU server implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.1 Listener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Code Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.3 Resource Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.4 Executor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Client Control Interface implementation . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 Server-Client Communication API . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Coverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Experiments 17
5.1 Experiment surrouding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Resource sharing model experiments . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.1 Comparison between Kepler and 9800GT on multiple program launches . 17
5.2.2 Resouce sharing model running multiple programs . . . . . . . . . . . . 19
5.2.3 More multiple program launching test . . . . . . . . . . . . . . . . . . . 19
5.3 System overhead measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3.1 Shared file system overhead . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3.2 Code generation overhead . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3.3 Compilation overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3.4 Execution overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3.5 Overall overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Conclusion and Future Works 23
dc.language.isoen
dc.subject雲端運算zh_TW
dc.subject圖形顯示晶片zh_TW
dc.subject通用圖形顯示晶片zh_TW
dc.subject圖形顯示晶片虛擬化zh_TW
dc.subject虛擬機器zh_TW
dc.subjectGPUen
dc.subjectGPGPUen
dc.subjectGPU Virtualizationen
dc.subjectVirtual Machinesen
dc.subjectCloud Computingen
dc.title使用nVidia Kepler 圖形顯示處理器建造通用圖形處理器虛擬化系統zh_TW
dc.titleGPGPU Virtualization System Using NVidia Kepler Series GPUen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳真貞,洪士灝
dc.subject.keyword雲端運算,圖形顯示晶片,通用圖形顯示晶片,圖形顯示晶片虛擬化,虛擬機器,zh_TW
dc.subject.keywordCloud Computing,GPU,GPGPU,GPU Virtualization,Virtual Machines,en
dc.relation.page25
dc.rights.note有償授權
dc.date.accepted2013-08-06
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved