Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61411
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝之真(Chih-Chen Hsieh)
dc.contributor.authorChiou-De Huangen
dc.contributor.author黃秋德zh_TW
dc.date.accessioned2021-06-16T13:02:29Z-
dc.date.available2018-08-08
dc.date.copyright2013-08-08
dc.date.issued2013
dc.date.submitted2013-08-06
dc.identifier.citation1. Chan, E.Y., et al., DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Research, 2004. 14(6): p. 1137-1146.
2. Hsieh, C.C. and T.H. Lin, Simulation of conformational preconditioning strategies for electrophoretic stretching of DNA in a microcontraction. Biomicrofluidics, 2011. 5(4).
3. Hsieh, C.C., T.H. Lin, and C.D. Huang, Simulation guided design of a microfluidic device for electrophoretic stretching of DNA. Biomicrofluidics, 2012. 6(4).
4. Lee, C.H. and C.C. Hsieh, Stretching DNA by electric field and flow field in microfluidic devices: An experimental validation to the devices designed with computer simulations. Biomicrofluidics, 2013. 7(1).
5. http://faculty.washington.edu/trawets/vc/theory/dna/index.html.
6. Kim, J.M. and P.S. Doyle, A Brownian dynamics-finite element method for simulating DNA electrophoresis in nonhomogeneous electric fields. Journal of Chemical Physics, 2006. 125(7).
7. Randall, G.C. and P.S. Doyle, DNA deformation in electric fields: DNA driven past a cylindrical obstruction. Macromolecules, 2005. 38(6): p. 2410-2418.
8. Terako, I., Polymer solutions: an introduction to physical properties. New York: Wiley, 2002.
9. deGennes, P.G., Polymer physics - Molecular individualism. Science, 1997. 276(5321): p. 1999-1999.
10. Perkins, T.T., D.E. Smith, and S. Chu, Single polymer dynamics in an elongational flow. Science, 1997. 276(5321): p. 2016-2021.
11. Teraoka, I., Polymer solutions : an introduction to physical properties2002, New York: Wiley.
12. Flory, P.J., Principles of polymer chemistry. The George Fisher Baker non-resident lectureship in chemistry at Cornell University.1953, Ithaca: Cornell University Press.
13. Paul C. Hiemenz , T.P.L., Polymer Chemistry, Second Edition. CRC press, 2007.
14. Larson, R.G., The rheology of dilute solutions of flexible polymers: Progress and problems. Journal of Rheology, 2005. 49(1): p. 1-70.
15. Larson, R.G., The Structure and Rheology of Complex Fluids. Oxford University Press, 1999.
16. Schafer, D.A., et al., TRANSCRIPTION BY SINGLE MOLECULES OF RNA-POLYMERASE OBSERVED BY LIGHT-MICROSCOPY. Nature, 1991. 352(6334): p. 444-448.
17. Chu, S., LASER MANIPULATION OF ATOMS AND PARTICLES. Science, 1991. 253(5022): p. 861-866.
18. Bensimon, A., et al., ALIGNMENT AND SENSITIVE DETECTION OF DNA BY A MOVING INTERFACE. Science, 1994. 265(5181): p. 2096-2098.
19. Bensimon, D., et al., STRETCHING DNA WITH A RECEDING MENISCUS - EXPERIMENTS AND MODELS. Physical Review Letters, 1995. 74(23): p. 4754-4757.
20. Michalet, X., et al., Dynamic molecular combing: Stretching the whole human genome for high-resolution studies. Science, 1997. 277(5331): p. 1518-1523.
21. LeDuc, P., et al., Dynamics of individual flexible polymers in a shear flow. Nature, 1999. 399(6736): p. 564-566.
22. Smith, D.E., H.P. Babcock, and S. Chu, Single-polymer dynamics in steady shear flow. Science, 1999. 283(5408): p. 1724-1727.
23. Randall, G.C., K.M. Schultz, and P.S. Doyle, Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices. Lab on a Chip, 2006. 6(4): p. 516-525.
24. Hsieh, C.-C. and P.S. Doyle, Studying confined polymers using single-molecule DNA experiments. Korea-Australia Rheology Journal, 2008. 20(3): p. 127-142.
25. Oswald, P., Rheophysics: The Deformation and Flow of Matter. Cambridge, 2009.
26. Jendrejack, R.M., et al., Shear-induced migration in flowing polymer solutions: Simulation of long-chain deoxyribose nucleic acid in microchannels. Journal of Chemical Physics, 2004. 120(5): p. 2513-2529.
27. Squires, T.M. and S.R. Quake, Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics, 2005. 77(3): p. 977-1026.
28. Hu, X., et al., The Use of Microfluidics in Rheology. Macromolecular Materials and Engineering, 2011. 296(3-4): p. 308-320.
29. Shaqfeh, E.S.G., The dynamics of single-molecule DNA in flow. Journal of Non-Newtonian Fluid Mechanics, 2005. 130(1): p. 1-28.
30. Bird, R.B., Dynamics of polymeric liquids1987, New York: Wiley.
31. McKinley, G.H. and T. Sridhar, Filament-stretching rheometry of complex fluids. Annual Review of Fluid Mechanics, 2002. 34: p. 375-415.
32. Kim, J.M. and P.S. Doyle, Design and numerical simulation of a DNA electrophoretic stretching device. Lab on a Chip, 2007. 7(2): p. 213-225.
33. 林宗賢, 以布朗動態法模擬與優化電泳拉伸DNA之策略. 國立臺灣大學化學工程學系,碩士論文, 民國100年.
34. Tang, J., N. Du, and P.S. Doyle, Compression and self-entanglement of single DNA molecules under uniform electric field. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(39): p. 16153-16158.
35. Ladoux, B. and P.S. Doyle, Stretching tethered DNA chains in shear flow. Europhysics Letters, 2000. 52(5): p. 511-517.
36. Hur, J.S., E.S.G. Shaqfeh, and R.G. Larson, Brownian dynamics simulations of single DNA molecules in shear flow. Journal of Rheology, 2000. 44(4): p. 713-742.
37. Jo, K., et al., Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows. Lab on a Chip, 2009. 9(16): p. 2348-2355.
38. Teclemariam, N.P., et al., Dynamics of DNA polymers in post arrays: Comparison of single molecule experiments and simulations. Macromolecules, 2007. 40(10): p. 3848-3859.
39. 王子瑜、曹恆光, 布朗運動、朗之萬方程式與布朗動力學. 物理, 民94.06: p. 456-460.
40. Ottinger, H.C., Stochastic processes in polymeric fluids : tools and examples for developing simulation algorithms1996, New York: Springer.
41. Marko, J.F. and E.D. Siggia, Stretching DNA. Macromolecules, 1995. 28(26): p. 8759-8770.
42. Jendrejack, R.M., J.J. de Pablo, and M.D. Graham, Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions. Journal of Chemical Physics, 2002. 116(17): p. 7752-7759.
43. Jendrejack, R.M., et al., Shear-induced migration in flowing polymer solutions: Simulation of long-chain DNA in microchannels (vol 120, pg 2513, 2004). Journal of Chemical Physics, 2004. 120(13): p. 6315-6315.
44. Jendrejack, R.M., et al., Effect of confinement on DNA dynamics in microfluidic devices. Journal of Chemical Physics, 2003. 119(2): p. 1165-1173.
45. Heyes, D.M. and J.R. Melrose, BROWNIAN DYNAMICS SIMULATIONS OF MODEL HARD-SPHERE SUSPENSIONS. Journal of Non-Newtonian Fluid Mechanics, 1993. 46(1): p. 1-28.
46. Underhill, P.T. and P.S. Doyle, On the coarse-graining of polymers into bead-spring chains. Journal of Non-Newtonian Fluid Mechanics, 2004. 122(1-3): p. 3-31.
47. Hsieh, C.C. and R.G. Larson, Modeling hydrodynamic interaction in Brownian dynamics: Simulations of extensional and shear flows of dilute solutions of high molecular weight polystyrene. Journal of Rheology, 2004. 48(5): p. 995-1021.
48. Larson, R.G., et al., Brownian dynamics simulations of a DNA molecule in an extensional flow field. Journal of Rheology, 1999. 43(2): p. 267-304.
49. 厲承翰, 於改良式漸縮微流道拉伸DNA之研究. 國立臺灣大學化學工程學系,碩士論文, 民國101年.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61411-
dc.description.abstract我們使用布朗動態法( Brownian dynamics ) 連結有限元素法( Finite element method )模擬DNA於微流道裝置中受流場拉伸之行為,並與實驗結果作比較。這是第一個在複雜流場下模擬DNA之行為並與實驗做比較的研究。由於模擬複雜流場下流體動力作用(Hydrodynamic interaction,HI)的成本太高,我們的模擬忽略HI,也希望藉由本研究評估HI對DNA在複雜微流場中的行為影響有多大,以期在未來裝置設計上作為參考。
本研究使用的三種通道分別為只有漸縮通道的case I、在漸縮通道上游加上漸擴通道之case II以及將case II沿中心線切一半的case III,其中case II與case III為case I 改良後的通道。以DNA的平均伸長量而言,我們的模擬結果雖然定量上與實驗結果有偏差,但整體趨勢與實驗一致。仔細比較個別DNA分子在實驗與模擬中的行為,我們發現:(a)在case II 和case III中,實驗與模擬中皆觀察到DNA在漸縮通道之上游出現「拉伸-旋轉」的預拉伸行為,並在漸縮通道達到較佳的拉伸率。(b) 在case I的實驗中,DNA在漸縮通道中有時會因觸碰通道側壁而發生頭尾位置互換的「翻轉」情形;在模擬中則因側壁上排斥能過於簡化而沒有出現 (c) case III的模擬結果低估DNA的拉伸率,主要成因是因為忽略HI,以致於模擬中沒有出現如實驗觀察中的DNA遷移(migration)。由我們比較結果發現,雖然我們的模擬忽略HI,但只要小心考慮HI造成的效果,模擬仍可以相當準確地用來預測實驗的趨勢,並作為實驗設計的輔助工具。
zh_TW
dc.description.abstractWe used Brownian dynamics-finite element method (BD-FEM) to simulate DNA stretching by pressure-driven flow through a microcontraction, and compared our results with the experimental data. This was the first time that simulations involving DNA in a complex flow field were compared head-to-head against the experimental results. Since including the hydrodynamic interaction (HI) in complex field is prohibitively expensive, we have neglected hydrodynamic interaction in our simulations. Thus, our study shall also give us an evaluation of how important the hydrodynamic interaction is in such a micro-environment. The result can be used to guild the device design in the future.
Three devices were used in this study: Case I is a microfluidic device with a simple contraction, case II is different from case I by having an expansion between the inlet of the device and the contraction and case III is derived from case II by cutting case II along its center axis. The simulated average DNA extension was found qualitatively very similar to experimental observation. From the detailed comparison of single DNA behavior, we found: (a) In both simulations and experiments, DNA in case II and case III experienced “rotation-extension” motion in the upstream of the contraction. This “rotation-extension” can facilitate DNA stretch in the contraction as expected. (b) In the experiments of case I, DNA sometimes flipped its head with its tail as a result of the collision with the side wall of the contraction. This phenomenon, however, has not been observed in our simulations due to the oversimplified boundary condition used to exclude DNA from the wall. (c) The simulated average DNA extension in case III was lower than the experimental value. The cause of this deviation was found to be the neglect of HI that in reality will make DNA migrate from the wall and therefore reduce DNA population in the low-extension regime. We conclude that our simulations, even though not including HI effect, can be used as an auxiliary tool for device design as long as the HI effect is carefully evaluated.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:02:29Z (GMT). No. of bitstreams: 1
ntu-102-R00524079-1.pdf: 6372797 bytes, checksum: 78be08d1371499c7d8e3f98fb674dc65 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 XV
符號表 XVI
希臘符號表 XIX
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第2章 文獻回顧 3
2.1 DNA的物理性質 3
2.1.1 去氧核糖核苷酸( DNA ) 3
2.1.2 堅韌長度( Persistence length ) 4
2.1.3 輪廓長度( Contour length ) 4
2.1.4 鬆弛時間( Relaxation time ) 5
2.1.5 初始形狀( Initial configuration ) 6
2.2 高分子鏈 7
2.2.1 理想鏈 7
2.2.2 真實鏈 9
2.2.2.1 體積排斥 ( Excluded volume) 9
2.2.2.2 Short-range interaction 與 Long-range interaction 9
2.2.3 蠕蟲鏈 ( Worm-like chain)[12] 11
2.3 Bead-rod model 和 Bead-spring model 15
2.4 流場與電場 16
2.4.1 流體動力學 (fluidic kinematics)[14] 16
2.4.2 流體動力作用( Hydrodynamic interaction ) 18
2.4.3 黛博拉數 ( Deborah number, De) 與懷森堡數( Weissenberg number, Wi) 20
2.4.4 應變量與應變率( Strain and Strain rate) 21
2.4.5 以流場或電場拉伸DNA 22
2.5 以電場模擬設計拉伸DNA之裝置與實驗驗證 24
2.6 流場研究之文獻回顧 30
2.7 本研究與文獻之綜合比較 36
第3章 模擬方法 38
3.1 布朗動態法 ( BD ) 38
3.2 有限元素法 ( FEM) 44
3.3 FEM連結BD 50
3.4 時間步階 51
3.5 參數設定測試 52
3.6 模擬裝置 54
3.7 黛博拉數計算與DNA拉伸長度量測方法 56
3.7.1 黛博拉數計算 56
3.7.2 DNA拉伸長度量測方法 56
3.8 DNA在通道入口處的型態 57
3.9 分析工具 59
3.9.1 VMD(Visual Molecular Dynamics) 59
3.9.2 Matlab 60
第4章 結果討論 61
4.1 流場與電場之分析 61
4.1.1 比較流場與電場之差異 61
4.1.2 流場分布與流場下caseII與caseIII之比較 64
4.1.2.1 x方向速度與y方向速度之流場分布 64
4.1.2.2 流場下caseII與caseIII之比較 67
4.2 DNA在流場與電場下之模擬結果 69
4.2.1 檢驗流場之預拉伸效果 69
4.2.2 caseII流場與電場拉伸率不佳之原因不同 70
4.2.3 電場設計之caseIII在流場中並不適用 72
4.3 模擬與實驗之比較 76
4.3.1 實驗特有之現象 76
4.3.1.1 Case I 76
4.3.1.2 Case III 77
4.3.2 不同黛博拉數下,實驗與模擬之拉伸率對位置比較 78
4.3.3 不同黛博拉數下,實驗與模擬之拉伸率分布比較 85
4.3.4 流體動力作用是造成模擬與實驗在caseIII差異的原因 90
4.3.5 黛博拉數為5時,模擬拉伸率超出實驗之原因。 91
4.3.6 黛博拉數為30時,模擬拉伸率不如實驗之原因。 96
4.3.7 壁上排斥力對模擬結果的影響 99
第5章 結論 102
第6章 參考文獻 103
dc.language.isozh-TW
dc.title以布朗動態法模擬DNA在微流道中受流場拉伸之研究zh_TW
dc.titleSimulating DNA Stretching in Microcontraction with Flow Field Using Brownian Dynamicsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee趙 玲(Ling Chao),童世煌(Shih-Huang Tung),諶玉真(Yu-Jane Sheng)
dc.subject.keywordDNA,漸縮微流道,流場,模擬,zh_TW
dc.subject.keywordDNA,microcontraction,flow field,simulation,en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2013-08-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
6.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved