Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61405
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞益(Ray-I Chang)
dc.contributor.authorTi-Yu Wuen
dc.contributor.author吳題羽zh_TW
dc.date.accessioned2021-06-16T13:02:22Z-
dc.date.available2021-02-22
dc.date.copyright2021-02-22
dc.date.issued2021
dc.date.submitted2021-02-04
dc.identifier.citation1. Lin, J.-W., et al., Visualization and Sonification of Long-Term Epilepsy Electroencephalogram Monitoring. Journal of Medical and Biological Engineering, 2018. 38(6): p. 943-952.
2. Thanh, L.T., et al., Multi-channel EEG epileptic spike detection by a new method of tensor decomposition. J Neural Eng, 2020. 17(1): p. 016023.
3. World Health Organization, (2019). Epilepsy: A public health imperative. Neurology and public health; WHO report, ISBN: 978-92-4-151593-1.
4. Teplan, M., Fundamentals of EEG measurement. Measurement science review, 2002. 2(2): p. 1-11.
5. Jackson, A.F. and D.J. Bolger, The neurophysiological bases of EEG and EEG measurement: A review for the rest of us. Psychophysiology, 2014. 51(11): p. 1061-1071.
6. Guler, I. and E.D. Ubeyli, Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J Neurosci Methods, 2005. 148(2): p. 113-21.
7. Hossain, M.S., et al., Applying Deep Learning for Epilepsy Seizure Detection and Brain Mapping Visualization. ACM Transactions on Multimedia Computing, Communications, and Applications, 2019. 15(1s): p. 1-17.
8. Motelow, J.E. and H. Blumenfeld, Functional neuroimaging of spike-wave seizures. Methods Mol Biol, 2009. 489: p. 189-209.
9. Shen, C.P., et al., High-Performance Seizure Detection System Using a Wavelet-Approximate Entropy-fSVM Cascade With Clinical Validation. Clin EEG Neurosci, 2013. 44(4): p. 247-56.
10. Shen, C.P., et al., A physiology-based seizure detection system for multichannel EEG. PLoS One, 2013. 8(6): p. e65862.
11. Shen, C.-P., et al., GA-SVM modeling of multiclass seizure detector in epilepsy analysis system using cloud computing. Soft Computing, 2015. 21(8): p. 2139-2149.
12. Indiradevi, K.P., et al., A multi-level wavelet approach for automatic detection of epileptic spikes in the electroencephalogram. Comput Biol Med, 2008. 38(7): p. 805-16.
13. Acharya, U.R., et al., Characterization of focal EEG signals: A review. Future Generation Computer Systems, 2019. 91: p. 290-299.
14. Oikonomou, V.P., A.T. Tzallas, and D.I. Fotiadis, A Kalman filter based methodology for EEG spike enhancement. Comput Methods Programs Biomed, 2007. 85(2): p. 101-8.
15. De Lucia, M., et al., A novel method for automated classification of epileptiform activity in the human electroencephalogram-based on independent component analysis. Med Biol Eng Comput, 2008. 46(3): p. 263-72.
16. Ghosh-Dastidar, S., H. Adeli, and N. Dadmehr, Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans Biomed Eng, 2008. 55(2 Pt 1): p. 512-8.
17. Temko, A., et al., Instantaneous measure of EEG channel importance for improved patient-adaptive neonatal seizure detection. IEEE Trans Biomed Eng, 2012. 59(3): p. 717-27.
18. Yuan, Y., et al., A Multi-View Deep Learning Framework for EEG Seizure Detection. IEEE J Biomed Health Inform, 2019. 23(1): p. 83-94.
19. Guo, L., et al., Classification of mental task from EEG signals using immune feature weighted support vector machines. IEEE Transactions on Magnetics, 2010. 47(5): p. 866-869.
20. Deriche, M., et al., Eigenspace Time Frequency Based Features for Accurate Seizure Detection from EEG Data. Irbm, 2019. 40(2): p. 122-132.
21. Mzurikwao, D., et al., A Channel Selection Approach Based on Convolutional Neural Network for Multi-channel EEG Motor Imagery Decoding, in 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). 2019. p. 195-202.
22. Zhang, X., et al., Adversarial Representation Learning for Robust Patient-Independent Epileptic Seizure Detection. IEEE J Biomed Health Inform, 2020.
23. Tsiouris, K.M., et al. Unsupervised Seizure Detection based on Rhythmical Activity and Spike Detection in EEG Signals. in 2019 IEEE EMBS International Conference on Biomedical Health Informatics (BHI). 2019. IEEE.
24. Acir, N. and C. Guzelis, Automatic spike detection in EEG by a two-stage procedure based on support vector machines. Comput Biol Med, 2004. 34(7): p. 561-75.
25. Nonclercq, A., et al., Spike detection algorithm automatically adapted to individual patients applied to spike-and-wave percentage quantification. Neurophysiol Clin, 2009. 39(2): p. 123-31.
26. Tzallas, A.T., M.G. Tsipouras, and D.I. Fotiadis, Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans Inf Technol Biomed, 2009. 13(5): p. 703-10.
27. Übeyli, E.D. and İ. Güler, Features extracted by eigenvector methods for detecting variability of EEG signals. Pattern Recognition Letters, 2007. 28(5): p. 592-603.
28. Davey, B.L., et al., Expert system approach to detection of epileptiform activity in the EEG. Med Biol Eng Comput, 1989. 27(4): p. 365-70.
29. Ko, C.W. and H.W. Chung, Automatic spike detection via an artificial neural network using raw EEG data: effects of data preparation and implications in the limitations of online recognition. Clinical Neurophysiology, 2000. 111(3): p. 477-481.
30. Wei Chen, Y.-Y.L., Chia-Ping Shen, Student Member IEEE, Hsiao-Ya Sung, Jeng-Wei Lin, and a.F.L. Ming-Jang Chiu, Ultra-fast Epileptic Seizure Detection Using EMD based on Multichannel Electroencephalogram.
31. Witte, H., L.D. Iasemidis, and B. Litt, Special issue on epileptic seizure prediction. IEEE Transactions on Biomedical Engineering, 2003. 50(5): p. 537-539.
32. Huang, N.E. and Z. Wu, A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Reviews of Geophysics, 2008. 46(2).
33. Wu, Z. and N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in adaptive data analysis, 2009. 1(01): p. 1-41 %@ 1793-5369.
34. Niedermeyer, E. and F.L. da Silva, Electroencephalography: basic principles, clinical applications, and related fields. 2005: Lippincott Williams Wilkins.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61405-
dc.description.abstract癲癇症於世界上並非罕見疾病,而目前醫學上最有效的診治方式為:使用腦波儀量測患者之長期腦電波,醫療人員再從不同樣態的腦電波,來分析患者的發病狀況加以醫治;但是長期腦電波的資料量相當可觀,如由醫師人工判讀將會曠日費時;此外,癲癇患者在發病當下出現的抽搐與不可控行為是患者主要受傷原因,掌握發病前兆(棘波)施以適當處置遂成為重要研究目標;因此,為了能夠減輕醫療人員負擔、找出患者即將發生癲癇之腦部區域,幫助醫療人員更精確的診治患者腦部,本研究提出一演算機制,從多頻道腦電波中定位出棘波的空間位置、時間點,從而輔助醫療人員做出相應措施來減輕傷害;在實驗設計上,會從癲癇患者身上收集16個頻道腦波紀錄,將16個單極腦電波頻道轉至雙極腦電波,並進行預處理與切割分段,再經由總體經驗模態分解法,將腦電訊號分解成八個本質模態函數,從每個本質模態函數提取特徵,並用線性判別分析訓練分類器來辨識棘波與非棘波二分類資料;在建模分類上每個特徵皆有對應的權重值,本研究使用此權重值為基礎,計算出每個特徵在分類上的貢獻值,並藉由特徵貢獻值回溯至頻道貢獻值,最後再依照頻道貢獻值於時間序列上的變化來判斷發生棘波之頻道與時間段;實驗成果準確率達94.9%,召回率為93.8%,不止補足[1]未能指出發生異狀頻道之不足,並在準確率與召回率表現皆優於最新文獻[2]。實驗結果,使用頻道貢獻值能夠有效推斷出該頻道是否正在發生棘波,以此方法也能幫助醫師明確指出每個頻道在哪些時點出現異狀。zh_TW
dc.description.abstractEpilepsy is not a rare disease in the world. At present, the most effective way of diagnosis and treatment in medicine is to measure the patient’s long-term electroencephalography. However, the long-term electroencephalography data is considerable, such as manual interpretation by a doctor will be time-consuming. In addition, the main cause of the patient’s injury is withdrawal and uncontrollable behavior of patients at epilepsy. Appropriate treatment has become an important research goal. Therefore, in order to reduce the burden on medical staff, find out the brain area of patients who are about to develop epilepsy, and help medical staff to diagnose and treat the patient’s brain more accurately, this study proposes a calculation mechanism. Locate the spatial location and time point of the spike wave in the multi-channel electroencephalography, so as to assist medical personnel to take corresponding measures to reduce the injury. In terms of experimental design, 16-channel electroencephalography records will be collected from patients with epilepsy, 16 unipolar electroencephalography channels will be transferred to bipolar electroencephalography, pre-processing and segmentation will be performed, and then the total empirical mode decomposition method will be used, Decompose the electroencephalography signal into eight essential modal functions, extract features from each essential modal function, and use linear discriminant analysis to train the classifier to identify the two-classification data of spikes and non-spurs. Each in the modeling category each feature has a corresponding weight value. This study uses this weight value as the basis to calculate the contribution value of each feature in the classification, and traces back to the channel contribution value by the feature contribution value, and finally according to the channel contribution value in the time series The above changes are used to determine the channel and time period where the spike occurs; the accuracy rate of the experimental results is 94.9%, and the recall rate is 93.8%. The performance is better than the latest literature. As a result of the experiment, using the channel contribution value can effectively infer whether a spike is occurring on the channel, and this method can also help the physician to clearly point out when each channel is abnormal.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:02:22Z (GMT). No. of bitstreams: 1
U0001-0302202115531000.pdf: 3078667 bytes, checksum: 3c36744621d56ab7bde05457edc852ea (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents摘要 2
ABSTRACT 3
論文目錄 5
圖目錄 7
表目錄 8
第一章 緒論 9
1.1. 研究背景 9
1.2. 研究動機與目的 10
2.1. 相關文獻回顧 15
2.2. 本研究分析方法介紹 18
2.2.1. 本質模態函數 18
2.2.2. 經驗模態分解法 19
2.2.3. 總體經驗模態分解法 20
2.3. 本研究分類方法介紹 21
2.3.1. 線性判別分析 21
第三章 研究方法 23
3.1. 資料來源 23
3.2. 研究架構 24
3.2.1. 資料預處理 24
3.2.2. 特徵萃取 25
3.2.3. 特徵選擇與建模 26
3.2.4. 找出發生棘波處 27
第四章 研究結果與討論 29
4.1. 實驗資料 29
4.2. 訊號分析結果 30
4.3. 特徵萃取結果 34
4.4. 特徵選取結果 34
4.5. 運用頻道貢獻值找出棘波 40
4.6. 討論 43
第五章 結論與未來展望 44
參考文獻 45
dc.language.isozh-TW
dc.title以多頻道腦電波貢獻值輔助定位棘波腦部區域之研究zh_TW
dc.titleLocating the Brain Area of Spike Wave with Contribution of Multi-channel Electroencephalographyen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林正偉(Jeng-Wei Lin),張恆華(Her-Bert Chang),王家輝(Chia-Hui Wang)
dc.subject.keyword腦電圖,經驗模態分解,癲癇,線性判別法,多通道,頻道權重,zh_TW
dc.subject.keywordElectroencephalography,Empirical Mode Decomposition,Epilepsy,Linear Discriminant Analysis,Multi-channel,Channel weight,en
dc.relation.page47
dc.identifier.doi10.6342/NTU202100460
dc.rights.note有償授權
dc.date.accepted2021-02-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-0302202115531000.pdf
  目前未授權公開取用
3.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved