Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61386Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張百恩(Bei-En Chang) | |
| dc.contributor.author | Yung-En Chen | en |
| dc.contributor.author | 陳詠恩 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:02:01Z | - |
| dc.date.available | 2016-09-24 | |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-06 | |
| dc.identifier.citation | Akimenko, M. A., M. Mari-Beffa, et al. (2003). 'Old questions, new tools, and some answers to the mystery of fin regeneration.' Dev Dyn 226(2): 190-201.
Anderson, D. M. e. a. (1997). 'A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function.' Nature 390: 175–179. Apschner, A., S. Schulte-Merker, et al. (2011). 'Not all bones are created equal - using zebrafish and other teleost species in osteogenesis research.' Methods Cell Biol 105: 239-255. Arai, F., T. Miyamoto, et al. (1999). 'Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors.' J Exp Med 190(12): 1741-1754. Armstrong, A. P., M. E. Tometsko, et al. (2002). 'A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function.' J Biol Chem 277(46): 44347-44356. Athanasou, N. A. (1996). 'Cellular biology of bone-resorbing cells.' J Bone Joint Surg Am 78(7): 1096-1112. Balkan, W., A. F. Martinez, et al. (2009). 'Identification of NFAT binding sites that mediate stimulation of cathepsin K promoter activity by RANK ligand.' Gene 446(2): 90-98. Baron R, R. J., Neff L, Chakraborty M, Chatterjee D, and H. W. Lomri A (1993). 'Cellular and molecular biology of the osteoclast. In: Noda M, editor. Cellular and molecular biology of bone.' San Diego: Academic Press: p 445–495. Bartlet JP, G. N., Coxam V, Davicco MJ. (1998). 'Calcitonin and staniocalcin: particular aspects of the endocrine regulation of calcium metabolism in fish and mammals.' Ann Endocrin 59: 281–290. Battaglino, R., D. Kim, et al. (2002). 'c-myc is required for osteoclast differentiation.' J Bone Miner Res 17(5): 763-773. Bayliss, P. E., K. L. Bellavance, et al. (2006). 'Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish.' Nat Chem Biol 2(5): 265-273. Bonewald LF, J. M. (2008). 'Osteocytes, mechanosensing and Wnt signaling.' Bone 42: 606–615. Brozoski, M. A., A. A. Traina, et al. (2012). 'Bisphosphonate-related osteonecrosis of the jaw.' Rev Bras Reumatol 52(2): 265-270. Brubaker, K. D., R. L. Vessella, et al. (2003). 'Cathepsin K mRNA and protein expression in prostate cancer progression.' J Bone Miner Res 18(2): 222-230. Bucay, N. e. a. (1998). 'Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification.' Genes Dev 12: 1260–1268. Buhling, F., A. Fengler, et al. (2000). 'Review: novel cysteine proteases of the papain family.' Adv Exp Med Biol 477: 241-254. Buhling, F., N. Waldburg, et al. (2000). 'Cathepsin K expression in human lung.' Adv Exp Med Biol 477: 281-286. Burgess, T. L., Y. Qian, et al. (1999). 'The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts.' J Cell Biol 145(3): 527-538. Cappellen, D., N. H. Luong-Nguyen, et al. (2002). 'Transcriptional program of mouse osteoclast differentiation governed by the macrophage colony-stimulating factor and the ligand for the receptor activator of NFkappa B.' J Biol Chem 277(24): 21971-21982. Catterall, J. B. and T. E. Cawston (2003). 'Drugs in development: bisphosphonates and metalloproteinase inhibitors.' Arthritis Res Ther 5(1): 12-24. Chagraoui, H. e. a. (2003). 'Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO.' Blood. 101(8):2983-9 Chiellini, C., M. Costa, et al. (2003). 'Identification of cathepsin K as a novel marker of adiposity in white adipose tissue.' J Cell Physiol 195(2): 309-321. CW, T. (1985). 'Calcium regulation in vertebrates: an overview.' Comp Biochem Physiol 82A: 249–255. Darnay, B. G., V. Haridas, et al. (1998). 'Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase.' J Biol Chem 273(32): 20551-20555. David, J. P., K. Sabapathy, et al. (2002). 'JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms.' J Cell Sci 115(Pt 22): 4317-4325. Dominguez, L. J., G. Di Bella, et al. (2011). 'Physiology of the aging bone and mechanisms of action of bisphosphonates.' Biogerontology 12(5): 397-408. Dougall, W. C., M. Glaccum, et al. (1999). 'RANK is essential for osteoclast and lymph node development.' Genes Dev 13(18): 2412-2424. Drake, F. H., R. A. Dodds, et al. (1996). 'Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts.' J Biol Chem 271(21): 12511-12516. Ducy, P., T. Schinke, et al. (2000). 'The osteoblast: a sophisticated fibroblast under central surveillance.' Science 289(5484): 1501-1504. Dufourcq, P. and S. Vriz (2006). 'The chemokine SDF-1 regulates blastema formation during zebrafish fin regeneration.' Dev Genes Evol 216(10): 635-639. Fleisch, H., Russell, R.G., Bisaz, S., Casey, P.A., Muhlbauer, R.C. (1968 ). 'The influence of pyrophosphate analogues (diphosphonates) on the precipitation and dissolution.' Calcified tissue research: Suppl:10-10a. Fleisch, H., Russell, R.G., Francis, M.D. (1969). 'Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo.' Science 165: 1262-1264. Fleisch, H., Russell, R.G., Straumann, F. (1966). 'Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis.' Nature 212: 901-903. Francis, M. D., Russell, R.G., Fleisch, H. (1969). 'Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo.' Science 165: 1264-1266. Franzoso, G. e. a. (1997). 'Requirement for NF-kB in osteoclast and B-cell development.' Genes Dev 11: 3482–3496. Fuller, K., C. Murphy, et al. (2002). 'TNFalpha potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL.' Endocrinology 143(3): 1108-1118. Galibert, L., M. E. Tometsko, et al. (1998). 'The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily.' J Biol Chem 273(51): 34120-34127. Gasser, A. B., Morgan, D.B., Fleisch, H.A., Richelle, L.J. (1972). 'The influence of two diphosphonates on calcium metabolism in the rat.' Clinical science 43: 31-45. Grigoriadis, A. E., Z. Q. Wang, et al. (1994). 'c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling.' Science 266(5184): 443-448. Hayashi, T., T. Kaneda, et al. (2002). 'Regulation of receptor activator of NF-kappa B ligand-induced osteoclastogenesis by endogenous interferon-beta (INF-beta ) and suppressors of cytokine signaling (SOCS). The possible counteracting role of SOCSs- in IFN-beta-inhibited osteoclast formation.' J Biol Chem 277(31): 27880-27886. Hofbauer, L. C., S. Khosla, et al. (2000). 'The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption.' J Bone Miner Res 15(1): 2-12. Hotokezaka, H., E. Sakai, et al. (2002). 'U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells.' J Biol Chem 277(49): 47366-47372. Hsu, H., D. L. Lacey, et al. (1999). 'Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand.' Proc Natl Acad Sci U S A 96(7): 3540-3545. Inaoka, T., G. Bilbe, et al. (1995). 'Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone.' Biochem Biophys Res Commun 206(1): 89-96. Iovine, M. K. (2007). 'Conserved mechanisms regulate outgrowth in zebrafish fins.' Nat Chem Biol 3(10): 613-618. Ishida, N., K. Hayashi, et al. (2002). 'Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator.' J Biol Chem 277(43): 41147-41156. Jimi, E., S. Akiyama, et al. (1999). 'Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function.' J Immunol 163(1): 434-442. Jung, A., Mermillod, B., Barras, C., Baud, M., Courvoisier, B. (1981). 'Inhibition by two diphosphonates of bone lysis in tumor-conditioned media.' Cancer research 41: 3233-3237. Karin, M., Cao, Y., Greten, F. R. & Li, Z.-W (2002). 'NF-kB in cancer: from an innocent bystander to major culprit.' Nature Rev. Cancer 2: 301–310. Kawakami, K. (2007). 'Tol2: a versatile gene transfer vector in vertebrates.' Genome Biol 8 Suppl 1: S7. Kawakami, K., A. Shima, et al. (2000). 'Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage.' Proc Natl Acad Sci U S A 97(21): 11403-11408. Kawakami, K., H. Takeda, et al. (2004). 'A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish.' Dev Cell 7(1): 133-144. kawakami, Y. (2006). 'Wnt/beta-catenin signaling regulates vertebrate limb regeneration.' Genes & development 20: 3232-3237. Knopf, F., C. Hammond, et al. (2011). 'Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin.' Dev Cell 20(5): 713-724. Knothe Tate ML, A. J., Tami AE, Bauer TW (2004). 'The osteocyte.' Int J Biochem Cell Biol 36: 1–8. Kobayashi, N., Y. Kadono, et al. (2001). 'Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis.' EMBO J 20(6): 1271-1280. Koga, A., M. Suzuki, et al. (1996). 'Transposable element in fish.' Nature 383(6595): 30. Kong, Y. Y., H. Yoshida, et al. (1999). 'OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis.' Nature 397(6717): 315-323. Lacey, D. L., H. L. Tan, et al. (2000). 'Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo.' Am J Pathol 157(2): 435-448. Lacey, D. L., E. Timms, et al. (1998). 'Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation.' Cell 93(2): 165-176. Laforest, L., C. W. Brown, et al. (1998). 'Involvement of the sonic hedgehog, patched 1 and bmp2 genes in patterning of the zebrafish dermal fin rays.' Development 125(21): 4175-4184. Lee, S. W., S. I. Han, et al. (2002). 'TAK1-dependent activation of AP-1 and c-Jun N-terminal kinase by receptor activator of NF-kappaB.' J Biochem Mol Biol 35(4): 371-376. Lee, Y., D. Hami, et al. (2009). 'Maintenance of blastemal proliferation by functionally diverse epidermis in regenerating zebrafish fins.' Dev Biol 331(2): 270-280. Li, X., N. Udagawa, et al. (2002). 'p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function.' Endocrinology 143(8): 3105-3113. Li, Y. P., Chen, W., Liang, Y., Li, E. & Stashenko, P. (1999). 'Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification.' Nature Genet. 23: 447–451. Li, Z., W. S. Hou, et al. (2000). 'Collagenolytic activity of cathepsin K is specifically modulated by cartilage-resident chondroitin sulfates.' Biochemistry 39(3): 529-536. Lomaga, M. A., W. C. Yeh, et al. (1999). 'TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling.' Genes Dev 13(8): 1015-1024. Ma, Y. L., R. L. Cain, et al. (2001). 'Catabolic effects of continuous human PTH (1--38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation.' Endocrinology 142(9): 4047-4054. Mak, T. W. Y., W. C. (2002). 'A block at the toll gate.' Nature Rev. Cancer 418: 835–836. Mandelin, J., M. Hukkanen, et al. (2006). 'Human osteoblasts produce cathepsin K.' Bone 38(6): 769-777. Manolagas, S. C. (2010). 'From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis.' Endocr Rev 31(3): 266-300. Marks SC, H. D. (1996). 'The structure and development of bone. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of bone biology.' San Diego: Academic Press: p 3–14. Marks, S. C., Jr. (1989). 'Osteoclast biology: lessons from mammalian mutations.' Am J Med Genet 34(1): 43-54. Matsumoto, M., T. Sudo, et al. (2000). 'Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL).' J Biol Chem 275(40): 31155-31161. McLean, W. O., B. R. (2001). 'Mouse models of abnormal skeletal development and homeostasis. .' Trends Genet 17: S38–S43. McQueney, M. S., B. Y. Amegadzie, et al. (1997). 'Autocatalytic activation of human cathepsin K.' J Biol Chem 272(21): 13955-13960. Mizukami, J., G. Takaesu, et al. (2002). 'Receptor activator of NF-kappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6.' Mol Cell Biol 22(4): 992-1000. Morony, S. e. a. (1999). 'A chimeric form of osteoprotegerin inhibits hypercalcemia and bone resorption induced by IL-1b, TNF-a, PTH, PTHrP, and 1,25(OH)2D3.' J. Bone Miner. Res 14: 1478–1485. Murshed M, H. D., Millan JL, McKee MD, Karsenty G (2005). 'Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone.' Genes Dev 19: 1093–1104. Nakagawa, N., M. Kinosaki, et al. (1998). 'RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis.' Biochem Biophys Res Commun 253(2): 395-400. Nechiporuk, A. and M. T. Keating (2002). 'A proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration.' Development 129(11): 2607-2617. Oda, H., Nakamura, K. & Tanaka, S (2002). 'Possible involvement of IkB kinase 2 and MKK7 in osteoclastogenesis induced by receptor activator of nuclear factor kB ligand.' J. Bone Miner. Res 17(612–621). Okamoto, Y., H. Tateishi, et al. (2011). 'An experimental study of bone healing around the titanium screw implants in ovariectomized rats: enhancement of bone healing by bone marrow stromal cells transplantation.' Implant Dent 20(3): 236-245. Passeri, M., M. C. Baroni, et al. (1991). 'Intermittent treatment with intravenous 4-amino-1-hydroxybutylidene-1,1-bisphosphonate (AHBuBP) in the therapy of postmenopausal osteoporosis.' Bone Miner 15(3): 237-247. Paterson, A. H., T. J. Powles, et al. (1993). 'Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer.' J Clin Oncol 11(1): 59-65. Persson P, B. r. B., Takagi Y. (1999). 'Characterisation of morphology and physiological actions of scale osteoclasts in the rainbow trout.' J Fish Biol 54: 669–684. Persson P, S. K., Bjo‥rnsson BT, Lundqvist H. (1998). 'Calcium metabolism and osmoregulation during sexual maturation of river running Atlantic salmon.' J Fish Biol 52: 334–349. Pollard, M., Luckert, P.H. (1985). 'Effects of dichloromethylene diphosphonate on the osteolytic and osteoplastic effects of rat prostate adenocarcinoma cells.' Journal of the National Cancer Institute 75: 949-954. Poss, K. D. (2003). 'Tales of regeneration in zebrafish.' Developmental dynamics: an officail publication of the American Association of Anatomists 226: 202-210. Poss, K. D., J. Shen, et al. (2000). 'Roles for Fgf signaling during zebrafish fin regeneration.' Dev Biol 222(2): 347-358. Quint, E., A. Smith, et al. (2002). 'Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine.' Proc Natl Acad Sci U S A 99(13): 8713-8718. Rieman, D. J., H. A. McClung, et al. (2001). 'Biosynthesis and processing of cathepsin K in cultured human osteoclasts.' Bone 28(3): 282-289. Rodan, G. A. (1998). 'Control of bone formation and resorption: biological and clinical perspective.' J Cell Biochem Suppl 30-31: 55-61. Rood, J. A., S. Van Horn, et al. (1997). 'Genomic organization and chromosome localization of the human cathepsin K gene (CTSK).' Genomics 41(2): 169-176. Ross, P. E. (2008). ' in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (ed. Rosen, C. J.).' American Society for Bone and Mineral Research: 16–22. Rubin J, R. C., Jacobs CR (2006). 'Molecular pathways mediating mechanical signaling in bone.' Gene 367: 1–16. Santamaria, J. A. (1991). 'Tail fin regeneration in teleosts: cell-extracellular matrix interacion in blastemal differentiation.' Journal of anatomy 176: 9-21. Schibler, D., Russell, R.G., Fleisch, H. (1968). 'Inhibition by pyrophosphate and polyphosphate of aortic calcification induced by vitamin D3 in rats.' Clinical science 35: 363-372. Schoppet, M., K. T. Preissner, et al. (2002). 'RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function.' Arterioscler Thromb Vasc Biol 22(4): 549-553. Shui, C., B. L. Riggs, et al. (2002). 'The immunosuppressant rapamycin, alone or with transforming growth factor-beta, enhances osteoclast differentiation of RAW264.7 monocyte-macrophage cells in the presence of RANK-ligand.' Calcif Tissue Int 71(5): 437-446. Simonet, W. S., D. L. Lacey, et al. (1997). 'Osteoprotegerin: a novel secreted protein involved in the regulation of bone density.' Cell 89(2): 309-319. Singh, S. P., J. E. Holdway, et al. (2012). 'Regeneration of amputated zebrafish fin rays from de novo osteoblasts.' Dev Cell 22(4): 879-886. Sire JY, H. A., Meunier J. (1990). 'Osteoclasts in the teleost fish: light and electron-microscopical observations.' Cell Tissue Res 260: 85–94. Sousa, S., N. Afonso, et al. (2011). 'Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration.' Development 138(18): 3897-3905. stoick-Cooper (2007a). 'Advances in signaling in vertebrate regeneration as pelode to regenerative medicine.' Genes & development 23: 1292-1315. Stoick-Cooper, C. L., G. Weidinger, et al. (2007b). 'Distinct Wnt signaling pathways have opposing roles in appendage regeneration.' Development 134(3): 479-489. Suda T, U. N., Takahashi N. (1996). 'Cells of bone: osteoclast generation. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of bone biology.' San Diego: Academic Press: p 87–102. Sukhova, G. K., G. P. Shi, et al. (1998). 'Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells.' J Clin Invest 102(3): 576-583. Suzuki N, S. T., Kurokawa T. (2000). 'Cloning of a calcitonin gene-related peptide receptor and a novel calcitonin receptorlike receptor form from the gills of flounder, Paralichthys olivaceus.' Gene Expr Patterns 244: 81–88. Takahashi, N. e. a. (1988). 'Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures.' Endocrinology 122: 1373–1382. Takayanagi, H., S. Kim, et al. (2002). 'Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts.' Dev Cell 3(6): 889-901. Takayanagi, H., S. Kim, et al. (2002). 'RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta.' Nature 416(6882): 744-749. Takeshita, S. e. a. (2002). 'SHIP-deficient mice are severely osteoporotic due to increased numbers of hyperresorptive osteoclasts.' Nature Med 9: 943–949. Teitelbaum, S. L. (2007). 'Osteoclasts: what do they do and how do they do it?' Am J Pathol 170(2): 427-435. Theill, L. E., W. J. Boyle, et al. (2002). 'RANK-L and RANK: T cells, bone loss, and mammalian evolution.' Annu Rev Immunol 20: 795-823. Troen, B. R. (2006). 'The regulation of cathepsin K gene expression.' Ann N Y Acad Sci 1068: 165-172. Udagawa, N., N. Takahashi, et al. (2000). 'Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function.' Endocrinology 141(9): 3478-3484. Van Wesenbeeck, L., P. R. Odgren, et al. (2002). 'The osteopetrotic mutation toothless (tl) is a loss-of-function frameshift mutation in the rat Csf1 gene: Evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification.' Proc Natl Acad Sci U S A 99(22): 14303-14308. Wagner, E. F. and G. Karsenty (2001). 'Genetic control of skeletal development.' Curr Opin Genet Dev 11(5): 527-532. Wei, S., M. W. Wang, et al. (2002). 'Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-kappa B and mitogen-activated protein kinase signaling.' J Biol Chem 277(8): 6622-6630. Weiss RE, W. N. (1979). 'Studies on the biology of fish bone. III. Ultrastructure of osteogenesis and resorption in osteocytic (cellular) and anosteocytic (acellular) bones.' Calcif Tissue Int 28: 43–56. White, J. A., M. B. Boffa, et al. (1994). 'A zebrafish retinoic acid receptor expressed in the regenerating caudal fin.' Development 120(7): 1861-1872. Whitehead, G. G., S. Makino, et al. (2005). 'fgf20 is essential for initiating zebrafish fin regeneration.' Science 310(5756): 1957-1960. Witten PE, H. L., Delling G, Hall BK. (1999). 'Immunohistochemical identification of a vacuolar proton pump (V-ATPase) in bone-resorbing cells of an advanced teleost species (Oreochromis niloticus, Teleostei, Cichlidae).' J Fish Biol 55: 1258–1127. Witten PE, V. W., Peters N, Hall BK. (2000). 'Bone resorption and bone remodeling in juvenile carp (Cyprinus carpio).' J Appl Ichthyol 16: 254–261. Wong, B. R. e. a. (1997). 'TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-jun N-terminal kinase in T cells.' J. Biol. Chem 272: 25190. Wong, B. R. e. a. (1999). 'TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src.' Mol. Cell 4: 1041–1049. Xiao, Y., H. Junfeng, et al. (2006). 'Cathepsin K in adipocyte differentiation and its potential role in the pathogenesis of obesity.' J Clin Endocrinol Metab 91(11): 4520-4527. Xing, L., T. P. Bushnell, et al. (2002). 'NF-kappaB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK- and cytokine-mediated osteoclastogenesis.' J Bone Miner Res 17(7): 1200-1210. Yan, T., B. L. Riggs, et al. (2001). 'Regulation of osteoclastogenesis and RANK expression by TGF-beta1.' J Cell Biochem 83(2): 320-325. Yasuda, H., N. Shima, et al. (1998). 'Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL.' Proc Natl Acad Sci U S A 95(7): 3597-3602. Ye, H., J. R. Arron, et al. (2002). 'Distinct molecular mechanism for initiating TRAF6 signalling.' Nature 418(6896): 443-447. Yoshinari, N. and A. Kawakami (2011). 'Mature and juvenile tissue models of regeneration in small fish species.' Biol Bull 221(1): 62-78. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61386 | - |
| dc.description.abstract | 蝕骨細胞是一種能夠吸收骨基質的細胞,為單核細胞經由細胞融合而來。蝕骨細胞和造骨細胞能夠互相配合並產生交互作用,一加一減地調節骨頭的生長及恆定以及控制骨頭的外形。蝕骨細胞要進行骨吸收時,會緊貼於骨頭表面,並且在氫離子幫浦的幫助下,營造出一種酸性的環境,進而活化部分溶小體酵素,例如tartrate resistant acid phosphatase (TRAP)、cysteine proteases(例如 cathepsin K, (CATK, CTSK))、carbonic anhydrase II等,分泌到細胞外,而達到骨質吸收的目的。Cathepsin K為一種能夠辨認半胱氨酸(Cysteine)的蛋白質分解酶,其受質包括第一型膠原蛋白和黏骨素 (osteonectin)。 而cathepsin K是屬於c1蛋白家族中的成員,主要在蝕骨細胞中表現。
為了進一步探討蝕骨細胞在生物體發育過程中所扮演的角色,我以斑馬魚為模式動物,分別將人類以及斑馬魚ctsk基因的啟動子結合βB1-Crystallin基因1.3kb的加強子片段及100bp的啟動子片段合併再與綠色螢光蛋白報導基因接合製成結構體,在斑馬魚受精卵一個細胞期時,以顯微注射的方式注入斑馬魚受精卵中,期望能夠在斑馬魚轉殖實驗中,藉由觀察螢光的表現,而得知蝕骨細胞在斑馬魚發育過程中的表現情形以及分布位置。 共篩選到六個轉殖恆定品系(transgenic stable line);三個來自人類CTSK啟動子;另外三個來自斑馬魚ctsk啟動子。結果發現,經人類CTSK基因啟動子所驅動螢光表現的轉殖斑馬魚在一至二周大時,螢光只表現在眼部,而當三至四周時,可在眼睛水晶體、鰓蓋骨,以及鰓蓋後下方骨骼,腹鰭基底端發現螢光。最後在成魚時,除了上述部位外,亦可於肋骨,尾鰭等處觀察到螢光表現。此外,經由魚類ctsk基因啟動子所驅動之轉殖斑馬魚的螢光表現較強、範圍較廣且出現時間較早;同樣表現在眼睛水晶體、鰓蓋骨,以及鰓蓋後下方骨骼,腹鰭基底端。但是在三個轉殖品系中卻無法在尾鰭鰭條上偵測到螢光表現。 為了探討CTSK基因於蝕骨細胞在骨再生作用 (bone regeneration) 時的表現情形,我進而進行轉殖斑馬魚的截尾實驗並且利用in situ hybridization的方式去做檢測及驗證。將成功轉殖人類ctsk啟動子的斑馬魚F1世代 (H5 line)施行尾鰭半截尾,去觀察尾鰭再生時螢光表現的動態變化。另一方面,野生型斑馬魚同樣也進行切尾,並於尾鰭再生時不同時間點再次收集標本,取得尾鰭新生組織,進行in situ hybridization。結果發現,尾鰭再生時,螢光蛋白的表現於再生第一天尾鰭截點處開始表現,在二至四天持續增強,並在截點至新生端點皆可觀察到螢光,第五天開始螢光表現亮度減弱,而至第九天時,螢光表現之亮度已無明顯增強的現象。然而在in situ hybridization這部分的實驗,設計引子去標定ctsk mRNA的表現位置,早期(2-3dpa)表現於截點後新生組織,晚期則發現只在尾鰭新生組織的端點處可偵測到訊號,同時也在再生後二至五天可發現訊號增強的現象。此兩組實驗在表現位置上結果的出入,推測是蛋白質與訊息核醣核酸表現時間點以及降解速度不一所致。 之前本實驗室在形態學上的觀察中,發現雙磷酸鹽藥物 alendronate對於成魚尾鰭再生有劑量效應 (dose-dependent)的影響,低濃度的雙磷酸鹽能促進斑馬魚尾鰭再生時骨頭生長;而高濃度的雙磷酸鹽則能抑制生長,(吳俊學,2009)因此,我也進行雙磷酸鹽藥物 alendronate的泡藥實驗,希望能了解該藥物在尾鰭再生時對於蝕骨細胞表現的影響。不論是原位雜合反應偵測CTSK mRNA或是觀察轉殖品系報導基因GFP螢光表現之結果均顯示,ctsk基因的表現程度相較於控制組來得低,而且浸泡高濃度(7.5×10-5M)之實驗組更有生長及表現延遲的現象。顯示雙磷酸鹽藥物在尾鰭再生過程中,會抑制蝕骨細胞的活性及分化程度。 | zh_TW |
| dc.description.abstract | Osteoclasts, multi-nucleated cells involved in bone resorption, are derived from the monocyte-macrophage cell lineage via fusion of precursor cells. Along with osteoblasts, these cells are implicated in bone remodeling by degrading the organic matter and dissolving mineralized bone matrix. The interaction and balance between osteoclasts and osteoblasts orchestrate bone homeostasis; osteoblasts conduce to bone formation, while osteoclasts facilitate bone resorption. Several characteristic proteolytic enzymes are highly expressed in osteoclasts such as tartrate resistant acid phosphatase (TRAP), cysteine proteases and carbonic anhydrase II. Cathepsin K, a member of cysteine proteases, encoded by ctsk gene, is expressed predominantly in osteoclasts. It belongs to the peptidase C1 protein family and is a lysosomal cysteine protease implicated in bone remodeling.
To explore the functional role of osteoclates during ontogeny and bone regeneration, I use zebrafish as a model animal and create transgenic stable lines. I utilize CTSK promoter and green fluorescent protein reporter gene (GFP) to label osteoclasts and track their development. To this aim, first I constructed plasmid constructs that combines the promoter of human or zebrafish ctsk gene with βB1-Crystallin 1.3kb (Cr1.3) enhancer elements and βB1-Crystallin 100bp promoter (Cr basal promoter), upstream of EGFP reporter gene. Then, these constructs were microinjected into one-cell stage zebrafish embryos. The expressions of EGFP were observed. In this study, I profit theβB1-Crystallin 1.3kb (Cr1.3) enhancer elements and 100bp promoter, which confer tissue-specificity in the lens as a selection marker for screening transgenic zebrafish as early as 3~4 dpf (day-post fertilization). I harvested 6 transgenic stable lines, three from human CTSK promoter construct and three from zebrafish ctsk promoter construct. A transgenic line H5, which is driven by human ctsk promoter, showed fluorescence in the regions of lens, craniofacial bones, ribs, and tail fin rays. On the other hand, the three lines of the zebrafish ctsk promoter expressed GFP stronger than those of human promoter. However, these three lines of zebrafish ctsk promoter fail to express EGFP in tail fin rays, even during the fin ray bone regeneration. To monitor the expression of CTSK gene in osteoclasts during bone regeneration, I employed fin amputation-regeneration measures in the transgenic zebrafish line H5 to observe the dynamics of EGFP expression as indicator. In addition, I perform in situ hybridization to locate endogenous ctsk mRNA expression during fin regeneration as a reference. The results showed that both the fluorescence of GFP and ctsk mRNA expression culminated at 3 dpa (day-post-amputation), then started to fade away at 5 dpa, and were restored to the basal line at 9 dpa. Yet the expression regions of GFP and mRNA are differential; the EGFP is expressed along the fin rays evenly, while the mRNA is expressed in the new regenerated fin tissues (2-3 dpa) and later only in the marginal zones close to blastema. The disparity may be ascribed to the different timing of expression and degradation. Our previous studies have shown that alendronate is dose-dpendent in the regeneration of zebrafish caudal fin: low concentration of alendronate promotes bone regeneration, while high concentration of alendronate inhibits bone regeneration (Wu, 2009). To evaluate the influences of alendronate on osteoclasts during fin regeneration, I treated the amputated zebrafish at two concentrations of alendronate, detected the dynamic EGFP expression, and performing in situ hybridization of ctsk expression. The results demonstrated that the application of alendronate diminished the expression of ctsk gene and led to its retardation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:02:01Z (GMT). No. of bitstreams: 1 ntu-102-R00450018-1.pdf: 7913722 bytes, checksum: f986517f9898bacaf7f2e26a9de00f76 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌 謝 ii 中文摘要 iii Abstract vi 壹、前言 1 貳、實驗材料 29 參、實驗方法 36 肆、結果 51 伍、討論 57 陸、結論 61 柒、未來展望與研究方向 62 捌、圖表 64 參考文獻 78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蝕骨細胞 | zh_TW |
| dc.subject | cathepsin K | zh_TW |
| dc.subject | 雙磷酸鹽 | zh_TW |
| dc.subject | 骨再生作用 | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | cathepsin K | en |
| dc.subject | osteoclasts | en |
| dc.subject | alendronate | en |
| dc.subject | bone regeneration | en |
| dc.subject | zebrafish | en |
| dc.title | 以基因轉殖方法及原位雜合反應探討ctsk基因在蝕骨細胞於斑馬魚發育及尾鰭再生過程之表現及其受雙磷酸鹽作用之影響 | zh_TW |
| dc.title | Observation of Cathepsin K expression by in situ hybridization and GFP-transgenic zebrafish during ontogeny and fin regeneration, and under the influence of alendronate administration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 姚宗珍(Tzung-Jen Yao),王若松(Ruo-Sung Wang),林立德(Li-Deh Lin) | |
| dc.subject.keyword | 蝕骨細胞,cathepsin K,雙磷酸鹽,骨再生作用,斑馬魚, | zh_TW |
| dc.subject.keyword | osteoclasts,cathepsin K,alendronate,bone regeneration,zebrafish, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-07 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| Appears in Collections: | 口腔生物科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-102-1.pdf Restricted Access | 7.73 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
