Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61353
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李建國(Chien-Kuo Lee)
dc.contributor.authorWan-Jung Wuen
dc.contributor.author吳宛蓉zh_TW
dc.date.accessioned2021-06-16T13:01:29Z-
dc.date.available2016-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-07
dc.identifier.citationAkashi, K., Traver, D., Miyamoto, T., and Weissman, I.L. (2000). A cologenic common myeloid progenitor that gives reise to all myeloid lineages. Nature 404, 193-197.
Asselin-Paturel, C., Boonstra, A., Dalod, M., Durand, I., Yessaad, N., Dezutter-Dambuyant, C., Vicari, A., O'Garra, A., Biron, C., Briere, F., et al. (2001). Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2, 1144-1150.
Asselin-Paturel, C., Brizard, G., Chemin, K., Boonstra, A., O'Garra, A., Vicari, A., and Trinchieri, G. (2005). Type I interferon dependence of plasmacytoid dendritic cell activation and migration. J Exp Med 201, 1157-1167.
Banchereau, J., and Pascual, V. (2006). Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25, 383-392.
Barnes, B.J., Richards, J., Mancl, M., Hanash, S., Beretta, L., and Pitha, P.M. (2004). Global and distinct targets of IRF-5 and IRF-7 during innate response to viral infection. J Biol Chem 279, 45194-45207.
Belz, G.T., and Nutt, S.L. (2012). Transcriptional programming of the dendritic cell network. Nat Rev Immunol 12, 101-113.
Blasius, A.L., Cella, M., Maldonado, J., Takai, T., and Colonna, M. (2006a). Siglec-H is and IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 107, 2474-2476.
Blasius, A.L., Giurisato, E., Cella, M., Schreiber, R.D., Shaw, A.S., and Colonna, M. (2006b). Bone marrow stromal cell antigen2 is a specific marker of type I IFN-producing cells in the Naive mouse, but a promiscuous cell surfave antigen following IFN stimulation. J Immunol 177, 3260-3265.
Brasel, K., Smedt, T.D., Smith, J.L., and Maliszewski, C.R. (2000). Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood 96, 3029-3039.
Brawand, P., Fitzpatrick, D.R., Greenfield, B.W., Kenneth Brasel, Maliszewski, C.R., and Smedt, T.D. (2002). Murine plasmacytoid pre-dendritic cells generated from Flt3 ligand-supplemented bone marrow cultures are immature APC. J Immunol 169, 6711-6719.
Cao, W., and Liu, Y.J. (2007). Innate immune functions of plasmacytoid dendritic cells. Curr Opin Immunol 19, 24-30.
Chen, L.S., Wei, P.C., Liu, T., Kao, C.H., Pai, L.M., and Lee, C.K. (2009). STAT2 hypomorphic mutant mice display impaired dendritic cell development and antiviral response. J Biomed Sci 16, 22.
Fancke, B., Suter, M., Hochrein, H., and O'Keeffe, M. (2008). M-CSF__ a novel plasmacytoid and conventional dendritic cell poietin. Blood 111, 150-159.
Fuertes Marraco, S.A., Scott, C.L., Bouillet, P., Ives, A., Masina, S., Vremec, D., Jansen, E.S., O'Reilly, L.A., Schneider, P., Fasel, N., et al. (2011). Type I interferon drives dendritic cell apoptosis via multiple BH3-only proteins following activation by PolyIC in vivo. PLoS One 6, e20189.
Gilliet, M., Cao, W., and Liu, Y.J. (2008). Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8, 594-606.
Haan, J.M.M.d., Lehar, S.M., and Bevan, M.J. (2000). CD8+ but not CD8- dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192, 1685-1695.
Hochrein, H., Shortman, K., Vremec, D., Scott, B., Hertzog, P., and O’Keeffe, M. (2001). Differential production of IL-12, IFN-a and IFN-r by mouse dendritic cell subsets. J Immunol 166, 5448-5455.
Kamogawa-Schifter, Y., Ohkawa, J., Namiki, S., Arai, N., Arai, K.-i., and Liu, Y. (2005). Ly49Q defines 2 pDC subsets in mice.pdf. Blood 105, 2787-2792.
Kingston, D., Schmid, M.A., Onai, N., Obata-Onai, A., Baumjohann, D., and Manz, M.G. (2009). The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis. Blood 114, 835-843.
Li, H.S., Gelbard, A., Martinez, G.J., Esashi, E., Zhang, H., Nguyen-Jackson, H., Liu, Y.J., Overwijk, W.W., and Watowich, S.S. (2011). Cell-intrinsic role for IFN-alpha-STAT1 signals in regulating murine Peyer patch plasmacytoid dendritic cells and conditioning an inflammatory response. Blood 118, 3879-3889.
Malissen, B., and Ewbank, J.J. (2005). 'TaiLoRing' the response of dendritic cells to pathogens. Nat Immunol 6, 749-750.
Manz, M.G., Traver, D., Akashi, K., Merad, M., Miyamoto, T., Engleman, E.G., and Weissman, I.L. (2001). Dendritic cell development from common myeloid progenitors. Ann N Y Acad Sci 938, 167-173; discussion 173-164.
Mattei, F., Bracci, L., Tough, D.F., Belardelli, F., and Schiavoni, G. (2009). Type I IFN regulate DC turnover in vivo. Eur J Immunol 39, 1807-1818.
McKenna, H.J., Stocking, K.L., Miller, R.E., Brasel, K., Smedt, T.D., Maraskovsky, E., Maliszewski, C.R., Lynch, D.H., Smith, J., Pulendran, B., et al. (2000). Mice Lacking Flt3 Ligand have Deficient Hematopoiesis Affecting Hematopoietic Progenitor Cells, Dendritic Cells , and Nature Killer Cells. Blood 95, 3489-3497.
Montoya, M., Schiavoni, G., Mattei, F., Gresser, I., Belardelli, F., Borrow, P., and Tough, D.F. (2002). Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood 99, 3263-3271.
Mount, A.M., Smith, C.M., Kupresanin, F., Stoermer, K., Heath, W.R., and Belz, G.T. (2008). Multiple dendritic cell populations activate CD4+ T cells after viral stimulation. PLoS One 3, e1691.
Naik, S.H., Corcoran, L.M., and Wu, L. (2005a). Development of murine plasmacytoid dendritic cell subsets. Immunol Cell Biol 83, 563-570.
Naik, S.H., Proietto, A.I., Wilson, N.S., Dakic, A., Schnorrer, P., Fuchsberger, M., Lahoud, M.H., O’Keeffe, M., Shao, Q.-x., Chen, W.-f., et al. (2005b). Cutting ege-Generation of splenic CD8+ and CD8- DC equivalents in Flt3L BM cultures. J Immunol 174, 6592-6597.
O'Keeffe, M., Hochrein, H., Vremec, D., Caminschi, I., Miller, J.L., Anders, E.M., Wu, L., Lahoud, M.H., Henri, S., Scott, B., et al. (2002). Mouse Plasmacytoid Cells: Long-lived Cells, Heterogeneous in Surface Phenotype and Function, that Differentiate Into CD8+ Dendritic Cells Only after Microbial Stimulus. J Exp Med 196, 1307-1319.
Onai, N., Obata-Onai, A., Schmid, M.A., Ohteki, T., Jarrossay, D., and Manz, M.G. (2007). Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 8, 1207-1216.
Onai, N., Obata-Onai, A., Tussiwand, R., Lanzavecchia, A., and Manz, M.G. (2006). Activation of the Flt3 signal transduction cascade rescues and enhances type I IFN-producing and DC development. J Exp Med 203, 227-238.
Park, C., Li, S., Cha, E., and Schindler, C. (2000). Immune response in Stat2 knocsout mice. Immunity 13, 795-804.
Rahim, M.M., Tai, L.H., Troke, A.D., Mahmoud, A.B., Abou-Samra, E., Roy, J.G., Mottashed, A., Ault, N., Corbeil, C., Goulet, M.L., et al. (2013). Ly49Q Positively Regulates Type I IFN Production by Plasmacytoid Dendritic Cells in an Immunoreceptor Tyrosine-Based Inhibitory Motif-Dependent Manner. J Immunol 190, 3994-4004.
Reizis, B. (2010). Regulation of plasmacytoid dendritic cell development. Curr Opin Immunol 22, 206-211.
Reizis, B., Bunin, A., Ghosh, H.S., Lewis, K.L., and Sisirak, V. (2011). Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 29, 163-183.
Sathe, P., Vremec, D., Wu, L., Corcoran, L., and Shortman, K. (2012). Convergent differentiation: myeloid and lymphoid pathways to murine plasmacytoid dendritic cells. Blood.
Shortman, K., Karupiah, G., Carbone, F.R., Belz, G.T., Smith, C.M., Eichner, D., and Heath, W.R. (2004). Cutting edge: Conventional CD8a+ dendritic cells are generally involved in priming CTL immunity to virus. J Immunol 172, 1996-2000.
Swiecki, M., Wang, Y., Vermi, W., Gilfillan, S., Schreiber, R.D., and Colonna, M. (2011). Type I interferon negatively controls pDC numbers in vivo. J Exp Med 208, 2367-2374.
Takagi, H., Fukaya, T., Eizumi, K., Sato, Y., Sato, K., Shibazaki, A., Otsuka, H., Hijikata, A., Watanabe, T., Ohara, O., et al. (2011). Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity 35, 958-971.
Taniguchi, T., and Takaoka, A. (2001). A Weak Signal For Strong Responces- Interferon-α,β. Nature Reviews 2, 378-386.
Tezuka, H., Abe, Y., Asano, J., Sato, T., Liu, J., Iwata, M., and Ohteki, T. (2011). Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction. Immunity 34, 247-257.
Vremec, D., Pooley, J., Hochrein, H., Wu, L., and Shortman, K. (2000). CD4 and CD8 expression by Dendritic Cell subtypes in mouse thymus and spleen. J Immunol 164, 2978-2986.
Waskow, C., Liu, K., Darrasse-Jeze, G., Guermonprez, P., Ginhoux, F., Merad, M., Shengelia, T., Yao, K., and Nussenzweig, M. (2008). The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 9, 676-683.
Yang, G.-X., Lian, Z.-X., Kikuchi, K., Liu, Y.-J., Ansari, A.A., Ikehara, S., and Gershwin, M.E. (2005a). CD4- plasnacytoid dendritic cells migrate in lymph nodes by CpG inoculation and represent a potent functional subseta of pDC. J Immunol 174, 3197-3203.
Yang, G.-X., Lian, Z.-X., Kikuchi, K., Moritoki, Y., Ansari, A.A., Liu, Y.-J., Ikehara, S., and Gershwin, M.E. (2005b). pDC of different origins have distinct characteristics and function-studies of lymphoid progenitors versus myeloid progenitors. J Immunol 175, 7281-7287.
Zhang, J., Raper, A., Sugita, N., Hingorani, R., Salio, M., Palmowski, M.J., Cerundolo, V., and Crocker, P.R. (2006 ). Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood 107, 3600-3608.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61353-
dc.description.abstract樹突細胞(Dendritic cells, DC)是一種專門的抗原呈現細胞 (antigen presentation cell),並且為連接先天性免疫系統 (innate immune system) 及適應性免疫系統 (adaptive immune system) 的重要橋梁。樹突細胞主要可分為傳統樹突細胞 (conventional DC, cDC) 以及漿狀樹突細胞 (plasmacytoid DC, pDC) 兩種亞型,它們可由骨髓前驅細胞如巨噬樹突前驅細胞 (macrophage DC progenitor) 或共同樹突細胞前驅細胞 (common DC progenitor, CDP) 以及淋巴前驅細胞,如共同淋巴前驅細胞 (common lymphoid progenitor, CLP)分化而來。pDC以其受到病毒感染時,能夠分泌大量的第一型干擾素 (type I IFN, IFN-I) 而著名,然而,究竟IFN-I是如何調控漿狀樹突細胞亞群的生長及功能,目前尚未完全釐清。離體 (ex vivo) 功能試驗中, 與野生型 pDC 相較之下,受到類鐸受體9 (Toll-like receptor 9, TLR9) 配體的刺激後,Ifnar1-/- pDC表現較低的CD86與產生較少量的促炎細胞激素 (proinflammatory cytokines) 及IFN-I。此外,信號轉導子和轉錄激活子 (signal transducer and activator of transcription,STAT) 1 基因剃除(Stat1-/-) pDC以及STAT2基因變異(Stat2m/m) pDC 也有功能缺失的現象。另一方面,在Ifnar1-/-和 Stat2m/m 的骨髓及脾臟中,兩種pDC亞群-CD4+CD8+ 與 CD4+CD8- pDCs 則有顯著地減少。而Ifnar1-/- pDC 在受到刺激後,所有亞群所產生的IL-6 與IFN-I也是較少的。CD4-CD8- pDC亞群在活化後相較於其他亞型而言有較高量MHC-II以及CD86的表現,同時分泌較大量的IL-6。此外,Ifnar1剔除的骨隨細胞體外培養下有較少pDC生成,並且當我們使用高濃度FL在體外 (in vitro) 培養,也無法挽救Ifnar1-/- 鼠的pDC生長及功能缺失。綜合以上,研究結果顯示第一型干擾素藉由STAT1與STAT2的路徑在pDC功能扮演正向調控的角色,並且,受到CpG刺激時,CD4-CD8- pDCs為四個pDC亞群中活化程度最強烈而可能是最成熟的一個亞群。zh_TW
dc.description.abstractDendritic cells are professional antigen presenting cells which connect innate and adaptive immune system throughout lymphoid organs. Conventional DC and plasmacytoid DC are the two major DC populations, which can be generated from both myeloid progenitors, such as macrophage DC progenitor and common DC progenitor (CDP), and lymphoid progenitors, such as common lymphoid progenitor (CLP). pDCs are known for their ability to produce robust amount of IFN-I during virus infection. However, it is still not completely understood how IFN-I regulates pDC subsets development and functions. Ex vivo functional assay showed that Ifnar1-/- pDC expressed lower level of CD86, and produced less proinflammatory cytokines and IFN-I than did WT pDC in response to a TLR9 ligand. In addition, Stat1-/- and Stat2m/m pDC also displayed impaired functions, which is consistent with Ifnar1-/- pDC. Interestingly, the amount of CD4+CD8+ and CD4+CD8- pDCs, two subsets of pDCs, was significantly diminished in Ifnar1-/- BM and spleen. Moreover, production of IL-6 and IFN-I were reduced in Ifnar1-/- pDC subsets upon CpG ODN stimulation. Among 4 different pDC subsets, CD4-CD8- pDC express the highest levels of MHC-II and CD86, and produce the greatest amount of IL-6 in response to CpG stimulation, compared to the other three subsets. In vitro BM culture showed that Ifnar1-/- BM developed fewer pDC and the impaired pDC development and functions in the absence of IFNAR1 could not be rescued supplemented with high dose FL. Taken together, IFN-I play a positive role in regulating pDC functions via STAT1 and STAT2 pathway, and CD4-CD8- pDCs are more activated and may represent the most mature population of pDCs after CpG stimulation.en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:01:29Z (GMT). No. of bitstreams: 1
ntu-102-R00449004-1.pdf: 2816584 bytes, checksum: 3949b6f31c945aa3e2641ff08099165b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsTable of Contents
致謝 ………………………………………………………………………………….. i
摘要 …………………………………………………………………………………. ii
Abstract …………………………………………………………………………….. iii
Abbreviations ……………………………………………………………………….. v
Table of contents …………………………………………………………………... vii
List of figures …………………………………………………………….………..... x
Chapter I Introduction …………………………………………………………… 1
1.1 DC subsets …………………………………………………………..………. 2
1.2 DC development ……………………………………………….…….……… 4
1.3 Cytokines in DC development …………………………….…….……..……. 5
1.4 Type I IFNs in regulating DC functions ………………………..………….... 7
1.5 Type I IFN Signaling ………………………………………………………... 8
1.6 Specific aims ………………………………………………….……………... 8
Chapter II Materials and Methods ……………………………………………... 11
2.1 Mice ………………………………………………………………………... 12
2.2 Reagents …………………………………………………………….……… 12
2.3 Preparation of huFlt3 ligand …………………………………………..……. 12
2.4 In vitro DC culture …………………………………………………..……… 13
2.5 Splenic DC isolation and DC subsets analysis ……………………………... 14
2.6 Functional assay of DCs ………..…………………………………..………. 14
2.7 Antigen presentation assay …………………………………………..……... 15
2.8 Bioassays for cytokines …………………………………………………...... 15
2.8.1 Bioassay for IFN-I ……………………………………………………. 15
2.8.2 Bioassay for IL-2 ……………………………………………………... 16
2.9 Fluorescence antibody ……………………………………………..……….. 16
Chapter III Results ……………………………………………………………….... 18
3.1 Preperation of huFL ……………………………………………………….. 19
3.2 Impaired functions in splenic pDC in response to TLR9 ligand ………….. 19
3.3 Analysis of pDC subsets in Ifnar1-/-, Stat1-/- and Stat2m/m ……………….... 20
3.4 pDC subsets become CD4-CD8- pDCs after CpG stimulation …………..... 21
3.5 Impaired activation in Ifnar1-/- pDC subsets upon CpG stimulation …….... 22
3.6 Distinct functions display by pDC subsets ……………………………...… 22
3.7 Kinetics of FL-dependent DC development from WT and Ifnar1-/- BM cells ………………………………………………………………………... 23
3.8 The developmental and functional impairment of DCs from Ifnar1-/- BM
cells cannot be rescued by high-dose FL ………………………………….. 24
3.9 Siglec-H of pDC downregulated in response to CpG1826 ………………... 26
Chapter IV Discussion ……………………………………………………………. 28
4.1 Functionless pDCs generated from in vitro feeder system ……….………. 29
4.2 pDC percentage reduced as FL dose increased in BM culture …................ 30
4.3 CD4+CD8+ and CD4+CD8- pDCs only decreased in Ifnar1-/- and Stat2m/m but
not Stat1-/- mice ……………………………………………………………31
4.4 CD4 and CD8 expression in response to TLR9 agonist stimulation ………32
4.5 pDC subsets developmental and functional models …………………….... 32
Figures ……………………………………………………………………………... 34
References …………………………………………………………………………. 66
dc.language.isoen
dc.subject漿狀樹突細胞亞群zh_TW
dc.subject第一型干擾素zh_TW
dc.subject3配體zh_TW
dc.subject信號轉導子和轉錄激活子zh_TW
dc.subject類Fms酪氨酸激&#37238zh_TW
dc.subject干擾素受體α1基因剔除zh_TW
dc.subjectpDC subsetsen
dc.subjectFlt3 liganden
dc.subjectSTATen
dc.subjectIfnar1-/-en
dc.subjectIFN-Ien
dc.title第一型干擾素調控漿狀樹突細胞亞群生長及功能之研究zh_TW
dc.titleThe Role of Type I Interferon in Regulating Development and functions of Plasmacytoid Dendritic Cell Subsetsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱清良(Ching-Liang Chu),黃麗華(Lih-Hwa Hwang)
dc.subject.keyword漿狀樹突細胞亞群,第一型干擾素,干擾素受體α1基因剔除,信號轉導子和轉錄激活子,類Fms酪氨酸激&#37238,3配體,zh_TW
dc.subject.keywordpDC subsets,IFN-I,Ifnar1-/-,STAT,Flt3 ligand,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2013-08-07
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved