Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61289
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韓玉山(Yu-San Han)
dc.contributor.authorBang-Yu Sunen
dc.contributor.author孫邦又zh_TW
dc.date.accessioned2021-06-16T10:58:29Z-
dc.date.available2018-08-17
dc.date.copyright2013-08-17
dc.date.issued2013
dc.date.submitted2013-08-08
dc.identifier.citationAdams G. P., Schier R., Marshall K. (1998) Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res. 58: 485-490.
Azzazy H. M. E., W. Edward Highsmith J. (2002) Phage display technology: clinical applications and recent innovations. Clinical Biochemistry. 35: 425-445.
Balasubramanian G., Sudhakaran R., Musthaq S. S., Sarathi M., Hameed A. S. S. (2006) Studies on the inactivation of white spot syndrome virus of shrimp by physical and chemical treatments, and seaweed extracts tested in marine and freshwater animal models. Journal of Fish Diseases. 29: 569-572.
Brey P. T., Lee W. J., Yamakawa M., Koizumi Y., Perrot S., Frangois M., Ashida M. (1993) Role of the integument in insect immunity: Epicuticular abrasion and induction of cecropin synthesis in cuticular epithelial cells. Proc Natl Acad Sci USA. 90: 6275-6279.
Chang C. F., Su M. S., Chen H. Y., Liao I. C. (2003) Dietary β-1,3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish & Shellfish Immunology. 15: 297-310.
Chen L. L., Wang H. C., Huang C. J., Peng S. E., Chen Y. G., Lin S. J., Chen W. Y., Dai C. F., Yu H. T., Wang C. H., Lo C. F., Kou G. H. (2002) Transcriptional Analysis of the DNA Polymerase Gene of Shrimp White Spot Syndrome Virus. Virology. 301: 136-147.
Chotigeat W., Tongsupa S., Supamataya K., Phongdara A. (2004) Effect of Fucoidan on Disease Resistance of Black Tiger Shrimp. Aquaculture. 233: 23-30.
Chou H. Y., Huang C. Y., Lo C. F., Kou G. H. (1998) Studies on transmission of white spot syndrome associated baculovirus (WSBV) in Penaeus monodon and P. japonicus via waterborne contact and oral ingestion. Aquaculture. 164: 263-276.
Chou H. Y., Y.Huang C., wang C. H., Chiang H. C., Lo C. F. (1995) Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Diseases of Aquatic Organisms. 23: 165-173.
Chou P. H., Chang H. S., Chen I. T., Lee C. W., Hung H. Y., Wang K. H. C. (2011) Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported. Fish & Shellfish Immunology. 30: 1109-1123.
Chou P. H., Chang H. S., Chen I. T., Lin H. Y., Chen Y. M., Yang H. L., Wang K. C. H. C. (2009) The putative invertebrate adaptive immune protein Litopenaeus vannamei Dscam (LvDscam) is the first reported Dscam to lack a transmembrane domain and cytoplasmic tail. 33: 1258-1267.
Citarasu T., Sivaram V., Immanuel G., Rout N., Murugan V. (2006) Influence of selected Indian immunostimulant herbs against white spot syndrome virus (WSSV) infection in black tiger shrimp, Penaeus monodon with reference to haematological, biochemical and immunological changes. Fish Shellfish Immunol. 21: 372-384.
Couch J. A. (1974a) Free and occluded virus similar to baculovirus in hepatopancreas of pink shrimp. Nature. 247: 229–231.
Couch J. A. (1974b) An enzootic nuclear polyhedrosis virus of pink shrimp: Ultrastructure, prevalence, and enhancement. J Inv Pathol. 24: 311-331.
Davies J. M., O'Hehir R. E., Suphioglu C. (2000) Use of phage display technology to investigate allergen-antibody interactions. Journal of Allergy and Clinical Immunology. 105: 1085-1092.
Dhar A. K., Cowley J. A., Hasson K. W., P. J. W. (2004) Genomic organization, biology, and diagnosis of Taura syndrome virus and yellowhead virus of penaeid shrimp. Adv Virus Res. 63: 347-415.
Du H., Xu Z., Wu X., Li W., Dai W. (2006) Increased resistance to white spot syndrome virus in Procambarus clarkii by injection of envelope protein VP28 expressed using recombinant baculovirus. Aquaculture. 260: 39-43.
Escobedo-Bonilla C. M., Alday-Sanz V., Wille M., Sorgeloos P., Pensaert M. B., Nauwynck H. J. (2008) A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. Journal of Fish Diseases.
Fegan D. F., III H. C. C. (2001) Health management for viral diseases in shrimp farms. In: Browdy C. L., Jory D. E., editors. The New Wave, Proceedings of the Special Session on Sustainable Shrimp Culture, Aquaculture 2001. Baton Rouge, Louisiana, USA: The world aquaculture society. pp. 168-198.
Flegel T. W. (2006) Detection of major penaeid shrimp viruses in Asia, a historical perspective with emphasis on Thailand. Aquaculture. 258: 1-33.
Granja C. B., Aranguren L. F., Vidal O. M., Aragon L., Salazar M. (2003) Does hyperthermia increase apoptosis in white spot syndrome virus (WSSV)-infected Litopenaeus vannamei? Diseases of Aquatic Organisms. 54: 73-78.
H. Marks R. W. G., Vlak J. M., van Hulten M. C. W. v. (2004) Genetic variation among isolates of White spot syndrome virus. Arch Virol. 149: 673-697.
Hameed A. S. S., Anilkumar M., Raj M. L. S., Jayaraman K. (1998) Studies on the pathogenicity of systemic ectodermal and mesodermal baculovirus and its detection in shrimp by immunological methods. Aquaculture. 160: 31-45.
Hameed A. S. S., Murthi B. L. M., Rasheed M., Sathish S., Yoganandhan K., Murugan V., Jayaraman K. (2002) An investigation of Artemia as a possible vector for white spot syndrome virus WSSV transmission to Penaeus indicus. Aquaculture. 204: 1-10.
Horowitz A., Horowitz S. (2001) Disease control in shrimp aquaculture from a microbial ecology perspective. In: Browdy C. L., Jory D. E., editors. The New Wave, Proceedings of the Special Session on Sustainable Shrimp Culture, Aquaculture 2001. Baton Rouge, Louisiana, USA: The World Aquaculture Society. pp. 198-218.
Huang C., Zhang X., Lin Q., Xu X., Hew C.-L. (2002) Characterization of a novel envelope protein (VP281) of shrimp white spot syndrome virus by mass spectrometry. Journal of General Virology. 83: 2385-2392.
Huang C., Zhang X., Lin Q., Xu X., Hu Z., Hew C. L. (2002) Proteomic Analysis of Shrimp White Spot Syndrome Viral Proteins and Characterization of a Novel Envelope Protein VP466. Molecular & Cellular Proteomics. 1: 223-231.
Huang T., Zhang X. (2013) Host defense against DNA virus infection in shrimp is mediated by the siRNA pathway. Eur J Immunol. 43: 137-146.
Hudson P. J. (1999) Recombinant antibody constructs in cancer therapy. Current Opinion in Immunology. 11: 548-557.
Jha R. K., Xu Z. R., Bai S. J., Sun J. Y., Li W. F., Shen J. (2007) Protection of Procambarus clarkii against white spot syndrome virus using recombinant oral vaccine expressed in Pichia pastoris. Fish Shellfish Immunol. 22: 295-307.
Jha R. K., Xu Z. R., Shen J., Bai S. J., Sun J. Y., Li W. F. (2006) The efficacy of recombinant vaccines against white spot syndrome virus in Procambarus clarkii. Immunol Lett. 105: 68-76.
Kanchanaphum P., Wongteerasupaya C., Sitidilokratana N., Boonsaeng V., Panyim S., Tassanakajon A., Withyachurnnarnkul B., Flegel T. W. (1998) Experimental transmission of white spot syndrome virus (WSSV) from crabs to shrimp Penaeus monodon. Dis Aquat Org. 34: 1-7.
Kasornchandra J., Boonyaratpalin S., Itami T. (1998) Etection of white spot syndrome in cultured peaneid shrimp in Asia: Microscopic observation and polymerase chain reaction. Aquaculture. 164: 243-251.
Kim C. S., Kosuke Z., Nam Y. K., Kim S. K., Kim K. H. (2007) Protection of shrimp (Penaeus chinensis) against white spot syndrome virus (WSSV) challenge by double-stranded RNA. Fish & Shellfish Immunology. 23: 242-246.
Kortt A. A., Dolezal O., Power B. E., Hudson P. J. (2001) Dimeric and trimeric antibodies: high avidity scFvs for cancer targeting. Biomolecular Engineering. 18: 95-108.
Kunji E. R., Chan K. W., Slotboom D. J., Floyd S., O'Connor R., Monne M. (2005) Eukaryotic membrane protein overproduction in Lactococcus lactis. Curr Opin Biotechnol. 16: 546-551.
Kunji E. R. S., Slotboom D.-J., Poolman B. (2003) Lactococcus lactis as host for overproduction of functional membrane proteins. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1610: 97-108.
Lee S. Y., Soderhall K. (2002) Early events in crustacean innate immunity. Fish Shellfish Immunol. 12: 421-437.
Leung P., Tran L. T. (2000) Predicting shrimp disease occurrence: artificial neural networks vs. logistic regression. Aquaculture. 187: 35-49.
Li H., Zhub Y., Xie X., Yang F. (2006) Identification of a novel envelope protein (VP187) gene from shrimp white spot syndrome virus. Virus Res. 115: 76-84.
Li H. X., Meng X. L., Xu J. P., Lu W., Wang J. (2005) Protection of crayfish, Cambarus clarkii, from white spot syndrome virus by polyclonal antibodies against a viral envelope fusion protein. Journal of Fish Diseases. 28: 285-291.
Li L. J., Yuan J. F., Cai C. A., Gu W. G., Shi Z. L. (2006) Multiple envelope proteins are involved in white spot syndrome virus (WSSV) infection in crayfish. Arch Virol. 151: 1309-1317.
Li Q., Zhang J., Chen Y., Yang F. (2003) White spot syndrome virus (WSSV) infectivity for Artemia at different developmental stages. Diseases of Aquatic Organisms. 57: 261-264.
Lightner D. V. (1996) A hand book of shrimp pathology and diagnostic procedures for diseases of penaeid shrimp. Baton Rouge, LA, USA: World Aquaculture Society. pp. 1-7.
Lightner D. V. (2003) The Penaeid Shrimp Viral Pandemics due to IHHNV, WSSV, TSV and YHV: History in the Americas and Current Status.
Lightner D. V. (2005) Biosecurity in shrimp farming: pathogen exclusion through use of SPF stock and routine surveillance. J World Aquac Soc. 36: 229-247.
Lightner D. V. (2011) Virus diseases of farmed shrimp in the Western Hemisphere (the Americas): a review. J Invertebr Pathol. 106: 110-130.
Lightner D. V., Pantoja C. R., Poulos B. T., Tang K. F. J., Redman R. M., Pasos-de-Andrade T., Bonami J. R. (2004) Infectious myonecrosis: New disease in Pacific white shrimp. Global Aquaculture Advocate. 7: 85.
Liu B., Yu Z., Song X., Guan Y. (2007) Studies on the transmission of WSSV (white spot syndrome virus) in juvenile Marsupenaeus japonicus via marine microalgae. J Invertebr Pathol. 95: 87-92.
Liu Y., Wu J., Song J., Sivaraman J., Hew C. L. (2006) Identification of a novel nonstructural protein, VP9, from white spot syndrome virus: its structure reveals a ferredoxin fold with specific metal binding sites. J Virol. 80: 10419-10427.
Lo C. F., Ho C. H., Chen C. H., Liu K. F., Chiu Y. L., Yeh P. Y., Peng S. E., Hsu H. C., Liu H. C., Chang C. F., Su M. S., Wang C. H., Kou G. H. (1997) Detection and tissue tropism of white spot syndrome baculovirus (WSBV) in captured brooders of Penaeus monodon with a special emphasis on reproductive organs. Dis Aquat Org. 30: 53-72.
Lo C. F., Ho C. H., Peng S. E., Chen C. H., Hsu H. C., Chiu Y. L., Chang C. F., Liu K. F., Su M. S., Wang C. H., Kou G. H. (1996) Detection of baculovirus associated with white spot syndrome (WSBV) in penaeid shrimps using polymerase chain reaction. Dis Aquat Org. 25: 133-141.
Lundin C. G. (1995) Global attempts to address shrimp disease. Washington.
Mejia-Ruiz C. H., Vega-Pena S., Alvarez-Ruiz P., Escobedo-Bonilla C. M. (2011) Double-stranded RNA against white spot syndrome virus (WSSV) VP28 or VP26 reduced susceptibility of Litopenaeus vannamei to WSSV, and survivors exhibited decreased susceptibility in subsequent re-infections. J Invertebr Pathol. 107: 65-68.
Menasveta P. (2002) Improved shrimp growout systems for disease prevention and environmental sustainability in Asia. Rev Fish Sci. 10: 391-402.
Mierau I., Kleerebezem M. (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol. 68: 705-717.
Mohan C. V., Phillips M. J., Bhat B. V., Umesh N. R., Padiyar P. A. (2008) Farm-level plans and husbandry measures for aquatic animal disease emergencies. Rev Sci Tech Off Int Epizoot. 27: 161-173.
Musthaq S. S., Sudhakaran R., Ahmed V. P. I., Balasubramanian G., Hameed A. S. S. (2006) Variability in the tandem repetitive DNA sequences of white spot syndrome virus (WSSV) genome and suitability of VP28 gene to detect different isolates of WSSV from India. Aquaculture. 256: 34-41.
Namikoshi A., Wu J. L., Yamashita T., Nishizawa T., Nishioka T., Arimoto M., Muroga K. (2004) Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome virus. Aquaculture. 229: 25-35.
Natividad K. D. T., Hagio M., Tanaka M., Nomura N., Matsumura M. (2007) White spot syndrome virus (WSSV) inactivation in Penaeus japonicus using purified monoclonal antibody targeting viral envelope protein. Aquaculture. 269: 54-62.
Newman S. G., Bullis R. A. (2001) Immune mechanisms of shrimp: form, function and practical application. In: Browdy C. L., Jory D. E., editors. The New Wave, Proceedings of the Special Session on Sustainable Shrimp Culture, Aquaculture 2001. Baton Rouge, Louisiana, USA: The World Aquaculture Society. pp. 226-237.
Novotny R., Scheberl A., Giry-Laterriere M., Messner P., Scha‥ffer C. (2005) Gene cloning, functional expression and secretion of the S-layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a in Lactococcus lactis. FEMS Microbiology Letters. 242: 27-35.
OIE. (2009) International Aquatic Animal Health Code. 4th edition. Paris.
Otta S. K., Shubha G., Joseph B., Chakraborty A., Karunasagar I., Karunasagar I. (1999) Polymerase chain reaction (PCR) detection of White spot syndrome virus (WSSV) in cultured and wild crustaceans in India. Dis Aquat Org. 38: 67-70.
Panphut W., Senapin S., Sriurairatana S., Withyachumnarnkul B., Flegel T. W. (2011) A novel integrase-containing element may interact with Laem-Singh virus (LSNV) to cause slow growth in giant tiger shrimp. BMC Vet Res. 7: 18.
Peng S. E., Lo C. F., Ho C. H., Chang C. F., Kou G. H. (1998) Detection of white spot baculovirus (WSBV) in giant freshwater prawn, Macrobrachium rosenbergii, using polymerase chain reaction. Aquaculture. 164: 253-262.
Peng S. E., Lo C. F., Lin S. C., Chen L. L., Chang Y. S., Liu K. F., Su M. S., Kou G. H. (2001) Performance of WSSV-infected and WSSV-negative Penaeus monodon postlarvae in culture ponds. Dis Aquat Org. 46: 165-172.
Pontes D. S., Azevedo M. S. P. d., Chatel J.-M., Langella P., Azevedo V., Miyoshi A. (2011) Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif. 79: 165-175.
Rajeshkumar S., Venkatesan C., Sarathi M., Sarathbabu V., Thomas J., Basha K. A., Hameed A. S. S. (2009) Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immunol. 26: 429-437.
Ravn P., Arnau J., Madsen S. M., Vrang A., Israelsen H. (2003) Optimization of signal peptide SP310 for heterologous protein production in Lactococcus lactis. Microbiology. 149: 2193-2201.
Robalino J., Browdy C. L., Prior S., Metz A., Parnell P., Gross P., Warr G. (2004) Induction of antiviral immunity by double-stranded RNA in a marine invertebrate. J Virol. 78: 10442-10448.
Rodriguez J., Bayot B., Amano Y., Panchana F., Blas I. d., Alday V., Calderon J. (2003) White spot syndrome virus infection in cultured Penaeus vannamei (Boone) in Ecuador with emphasis on histopathology and ultrastructure. Journal of Fish Diseases. 26: 439-450.
Rout N., Kumar S., Jaganmohan S., Murugan V. (2007) DNA vaccines encoding viral envelope proteins confer protective immunity against WSSV in black tiger shrimp. Vaccine. 25: 2778-2786.
S S. M., Kwang J. (2011) Oral vaccination of baculovirus-expressed VP28 displays enhanced protection against White Spot Syndrome Virus in Penaeus monodon. Plos One. 6: e26428.
Sakaew W., Pratoomthai B., Anantasomboon G., Asuvapongpatana S., Sriurairattana S., Withyachumnarnkul B. (2008) Abdominal segment deformity disease (ASDD) of the whiteleg shrimp Penaeus vannamei reared in Thailand. Aquaculture. 284: 46-52.
Sarathi M., Simon M. C., Venkatesan C., Hameed A. S. S. (2008) Oral administration of bacterially expressed VP28 dsRNA to protect Penaeus monodon from white spot syndrome virus. Mar Biotechnol (NY). 10: 242-249.
Satoh J., Mushiake K., Mori K., Arimoto M., Imaizumi K., Nishizawa T., Muroga K. (1999) Occurence of PAV (Penaeid Acute Viremia) in seed production of Kuruma prawn. Fish Pathol. 34: 33-38.
Schuur A. M. (2003) Evaluation of biosecurity applications for intensive shrimp farming. Aquacultural Engineering. 28: 3-20.
Smith V. J., Brown J. H., Hauton C. (2003) Immunostimulation in crustaceans: does it really protect against infection? Fish & Shellfish Immunology. 15: 71-90.
Soto M. A., Lotz J. M. (2001) Epidemiological parameters of White Spot Syndrome Virus infections in Litopenaeus vannamei and L. setiferus. J Invertebr Pathol. 78: 9-15.
Sritunyalucksana K., Apisawetakan S., Boon-nat A., Withyachumnarnkul B., Flegel T. W. (2006) A new RNA virus found in black tiger shrimp Penaeus monodon from Thailand. Virus Res. 118: 31-38.
Stentiford G. D., Bonami J.-R., Alday-Sanz V. (2009) A critical review of susceptibility of crustaceans to Taura syndrome, Yellowhead disease and White Spot Disease and implications of inclusion of these diseases in European legislation. Aquaculture. 291: 1-17.
Stiles M. E., Holzapfel W. H. (1997) Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology 36: 1-29.
Sudha P. M., Mohan C. V., Shankar K. M., Hegde A. (1998) Relationship between White Spot Syndrome Virus infection and clinical manifestation in Indian cultured penaeid shrimp. Aquaculture. 167: 95-101.
Supamattaya K., Hoffman R. W., Boonyaratpalin S., Kanchanaphum P. (1998) Experimental transmission of white spot syndrome virus (WSSV) from black tiger shrimp Penaeus monodon to the sand crab Portunus pelagicus, mud crab Scylla serrata and krill Acetes sp. Dis Aquat Org. 32: 79-85.
Tendencia E. A., Bosma R. H., Verreth J. A. J. (2010) WSSV risk factors related to water physico-chemical properties and microflora in semi-intensive Penaeus monodon culture ponds in the Philippines. Aquaculture. 302: 164-168.
Tsai J. M., Wang H. C., Leu J. H., Hsiao H. H., Wang A. H.-J., Kou G. H., Lo C. F. (2004) Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J Virol. 78: 11360-11370.
Tsai J. M., Wang H. C., Leu J. H., Wang A. H.-J., Zhuang Y., Walker P. J., Kou G. H., Lo C. F. (2006) Identification of the nucleocapsid, tegument, and envelope proteins of the shrimp white spot syndrome virus virion. J Virol. 80: 3021-3029.
van Asseldonk M., Rutten G., Oteman M., Siezen R. J., deVos W. M., Simons G. (1990) Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp, lactis MG1363. Gene. 155-160.
van Hulten M. C. W., Reijns M., Vermeesch A. M. G., Zandbergen F., Vlak J. M. (2002) Identification of VP19 and VP15 of white spot syndrome virus (WSSV) and glycosylation status of the WSSV major structural proteins. Journal of General Virology. 83: 257-265.
van Hulten M. C. W., Westenberg M., Goodall S. D., Vlak J. M. (2000) Identification of two major virion protein genes of white spot syndrome virus of shrimp. Virology. 266: 227-236.
van Hulten M. C. W., Witteveldt J., Peters S., Kloosterboer N., Tarchini R., Fiers M., Sandbrink H., Lankhorst R. K., Vlak J. M. (2001a) The white spot syndrome virus DNA genome sequence. Virology. 286: 7-22.
van Hulten M. C. W., Witteveldt J., Snippe M., Vlak J. M. (2001b) White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp. Virology. 285: 228-233.
Vanpatten K. A., Nunan L. M., Lightner D. V. (2004) Seabirds as potential vectors of penaeid shrimp viruses and the development of a surrogate laboratory model utilizing domestic chickens. Aquaculture. 241: 31-46.
Vaseeharan B., Anand T. P., Murugan T., Chen J. C. (2006) Shrimp vaccination trials with the VP292 protein of white spot syndrome virus. Lett Appl Microbiol. 43: 137-142.
Vidal O. M., Granja C. B., Anguren F. (2001) A Profound Effect of Hyperthermia on Survival of Litopenaeus vannamei Juveniles Infected with White Spot Syndrome Virus. Journal of The World Aquaculture Society. 32: 364-372.
Vijayan K. K., Raj V. S., Balasubramanian C. P., S. V. Alavandi, Sekhar V. T., Santiago T. C. (2005) Polychaete worms—a vector for white spot syndrome virus (WSSV). Diseases of Aquatic Organisms. 63: 107-111.
Vlak J.M., Bonami J.R., Flegel T.W., Kou G.H., Lightner D.V., Lo C.F., Loh P.C., Walker P.W. (2004) Nimaviridae.C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, L.A. Ball (Eds.), Virus Taxonomy Eighth Report of the International Committee on Taxonomy of Viruses, Elsevier, Amsterdam.187–192
Wang Q., Poulos B. T., Lightner D. V. (2000a) Protein analysis of geographic isolates of shrimp white spot syndrome virus. Arch Virol. 145: 263-274.
Wang Y.-C., Lo C.-F., Chang P.-S., Kou G.-H. (1998) Experimental infection of white spot baculovirus in some cultured and wild decapods in Taiwan. Aquaculture. 164: 221-231.
Wang Y. G., Hassan M. D., Shariff M., Zamri S. M., Chen X. (1999) Histopathology and cytopathology of white spot syndrome virus (WSSV) in cultured Penaeus monodon from peninsular Malaysia with emphasis on pathogenesis and the mechanism of white spot formation. Diseases of Aquatic Organisms. 39: 1-11.
Watthanasurorot A., Jiravanichpaisal P., Liu H., Soderhall I., Soderhall K. (2011) Bacteria-Induced Dscam Isoforms of the Crustacean, Pacifastacus leniusculus. Plos One. 6: e1002062.
Westenberg M., Heinhuis B., Zuidema D., Vlak J. M. (2005) siRNA injection induces sequence-independent protection in Penaeus monodon against white spot syndrome virus. Virus Res. 114: 133-139.
Withyachumnarnkul B., Boonsaeng V., Chomsoong R., Flegel T. W., Muangsin S., Nash G. L. (2003) Seasonal variation in white spot syndrome virus-positive samples in broodstock and post-larvae of Peaneus monodon in Thailand. Dis Aquat Org. 53: 167-171.
Witteveldt J., Cifuentes C. C., Vlak J. M., van Hulten M. C. W. v. (2004) Protection of Penaeus monodon against White Spot Syndrome Virus by Oral Vaccination. J Virol. 78: 2057-2061.
Witteveldt J., Vlak J. M., van Hulten M. C. W. v. (2006) Increased tolerance of Litopenaeus vannamei to white spot syndrome virus (WSSV) infection after oral application of the viral envelope protein VP28. Diseases of Aquatic Organisms. 70: 167-170.
Wongmaneeprateep S., Baoprasertkul P., Prompamorn P., Thongkao K., Limsuwan C., Chuchird N. (2010) Effects of Water Temperature on the White Spot Syndrome Virus Infection in Postlarvae Litopenaeus vannamei. Walailak J Sci & Tech. 7: 127-134.
Wu J. L., Namikoshi A., Nishizawa T., Mushiake K., Teruya K., Muroga K. (2001) Effects of shrimp density on transmission of penaeid acute viremia in Penaeus japonicus by cannibalism and the waterborne route. Diseases of Aquatic Organisms. 47: 129-135.
Wu W., Wang L., Zhang X. (2005) Identification of white spot syndrome virus (WSSV) envelope proteins involved in shrimp infection. Virology. 332: 578-583.
Xie X., Xu L. i., Yang F. (2006) Proteomic analysis of the major envelope and nucleocapsid proteins of white spot syndrome virus. J Virol. 80: 10615-10623.
Xie X., Yang F. (2006) White spot syndrome virus VP24 interacts with VP28 and is involved in virus infection. J Gen Virol. 87: 1903-1908.
Xu J., Han F., Zhang X. (2007) Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. Antiviral Res. 73: 126-131.
Yan D. C., Dong S. L., Huang J., Yu X. M., Feng M. Y., Liu X. Y. (2004) White spot syndrome virus (WSSV) detected by PCR in rotifers and rotifer resting eggs from shrimp pond sediments. Diseases of Aquatic Organisms. 59: 69-73.
Yang F., He J., Lin X., Li Q., Pan D., Zhang X., Xu X. (2001) Complete genome sequence of the shrimp white spot bacilliform virus. J Virol. 75: 11811-11820.
Yi G., Wang Z., Qi Y., Yao L., Qian J., Hu L. (2004) VP28 of Shrimp White Spot Syndrome Virus Is Involved in the Attachment and Penetration into Shrimp Cells. Journal of Biochemistry and Molecular Biology. 37: 726-734.
Zhang J. S., Dong S. L., Dong Y. W., Tian X. L., Cao Y. C., Li Z. J., Yan D. C. (2010) Assessment of the role of brine shrimp Artemia in white spot syndrome virus (WSSV) transmission. Vet Res Commun. 34: 25-32.
Zhang X., Huang C., Xu X., Hew C. L. (2002) Identification and localization of a prawn white spot syndrome virus gene that encodes an envelope protein. Journal of General Virology. 83: 1069-1074.
Zhu Y., Xie X., Yang F. (2005) Transcription and identification of a novel envelope protein (VP124) gene of shrimp white spot syndrome virus. Virus Res. 113: 100-106.
Zhu Y. B., Li H. Y., Yang F. (2006) Identification of an envelope protein (VP39) gene from shrimp white spot syndrome virus. Arch Virol. 151: 71-82.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61289-
dc.description.abstract蝦類白點症病毒 (White spot syndrome virus, WSSV) 在九零年代初期首次出現於亞洲,由於它可感染的甲殼類宿主種類相當廣泛,且在感染後七到十天便可造成養殖蝦近百分之百的死亡,因此疫情迅速擴散至全球,所到之處均造成蝦類繁養殖場極大的的損失,迄今仍是危害全球養蝦產業的重要疾病之一。基於蝦類養殖是台灣重要的產業,民間公司,Transcending Biotechnologies, Inc.,成功研發出能有效中和白點症病毒的單株抗體(AP-1)。過去數年中該公司與國立臺灣海洋大學和國立台灣大學合作之田間實驗,證實以AP-1處理帶有白點症病毒的草蝦種蝦及幼苗,可成功生產出檢測無病毒的蝦苗,達到預防垂直傳染的目標。而無病毒的蝦苗,仍無法克服環境中帶原生物所導致的水平傳染,必須要將之杜絕才能成功收穫成蝦。由於成本考量在養殖產業是重要的環節,如果AP-1要擴大使用在防止水平傳染,就必需要改變傳統以哺乳類細胞生產之方式,從而降低其生產成本才能有實用價值,方可真正運用在產業上。
乳酸菌是國際上認可對人體無害且有益的微生物(Generally Recognized as Safe, GARS),並且在養殖產業普遍都認為可以增加養殖物種的產量。近年來發展之乳酸菌蛋白質表現系統(Nisin Controlled gene Expression system, NICE)不再使用抗生素作為篩選方法,所生產之抗病毒生物製劑較沒有安全疑慮。但細菌表現系統無法表現完整抗體,所以將以單鍊抗體(Single-chain variable fragment, scFv)型式表現AP-1。 本實驗是建立在此背景下,目的是利用微生物蛋白質表現系統生產低成本的抗病毒生物製劑。
實驗結果顯示,scFv-AP-1(sAP-1)能在乳酸菌蛋白質表現系統中成功表現重組蛋白,但沒有如預期之方式分泌至培養液中,所以轉而利用較為經濟並可由胞質間隙中萃取蛋白質之大腸桿菌來確認sAP-1功能及保護力。表現之sAP-1在ELISA實驗中可與WSSV VP28蛋白結合,並與AP-1有 VP28之結合相互競爭現象,sAP-1和AP-1應具有相同之結合點。攻毒試驗結果顯示sAP-1保護效果達到存活率60%,但在real-time PCR檢測其病毒結果中,死亡及存活皆可偵測到高病毒量,推測雖具有保護效果但如果無法完全抑制病毒,後期還是有病毒潛伏的可能性;因此,現場使用方式與劑量的控制將是下一階段試驗之重點。
zh_TW
dc.description.abstractWhite spot syndrome virus (WSSV) was first emerged in Asia in the early 1990’s. It has a wide range of hosts among crustaceans and causes up to 100% mortality within 7 to 10 days in cultured shrimps. It was spread out all over the world rapidly. Until now, white spot syndrome has become one of the most serious viral diseases of cultivated shrimp and causes considerable economic losses to the shrimp farming industry worldwide. The monoclonal antibody AP-1 was developed by a biotech company, Transcending Biotechnologies, Inc. (TBI), which was demonstrated that could neutralize WSSV in laboratories. In the past years, TBI, National Taiwan Ocean University, and National Taiwan University have collaborated for field tests and concluded that the broodstocks and larval of Penaeus monodon that were treated with AP-1 had no WSSV been detected.
Although the vertical transmission of WSSV can be prevented by AP-1 treatment, the WSSV is still able to infect shrimp through horizontal transmission. To ensure the harvest of shrimp, the horizontal transmission of WSSV has to be solved. Since a relatively huge amount of AP-1 needed to prevent horizontal transmitted WSSV, the production cost needs to be reduced. The production of AP-1 from microbial expression systems were therefore selected and tested.
Lactic acid bacteria (LAB) are internationally accepted as “Generally Recognized as Safe” (GARS) probiotics that are harmless to human and are generally believed can increase the production of cultured animals. Additionally, in the recent years, the LAB based Nisin Controlled Gene Expression system (NICE) has been developed which does not require antibiotic selection and has less safty concerns. Because bacteria usually are difficult to express conformationally correct antibody, the AP-1 was reconstructed to a single chain variable fragment (scFv) form. The goal of this study was to express the anti-WSSV biologics scFv-AP-1 (sAP-1) by NCIE or other microbial expression systems.
The results showed that sAP-1 can be expressed in NICE system, but it does not secret to medium and difficult to be extracted from cells for further purification. The expression systems were then switched to E.coli expression systems so that sAP-1 could be evaluated for its binding reactivity and biological function. The binding activity of E.coli expressed sAP-1 to VP28 was confirmed through ELISA and its binding site was further verified by competition assay with AP-1 as competitor. In the viral challenge experiments, Cherax quadricarinatus received PBS or unrelated protein plus WSSV were all dead at day 6 and sAP-1 treated group had 60% survival rate at day 12 which was less than control group without WSSV and AP-1 treated group’s 100% protection. Some of survived shrimps in sAP-1 group still remained high levels of WSSV by real-time PCR assay. The data clearly indicates that sAP-1 can protect shrimp from WSSV infection but the dosage and application procedure have to be determined before having the maximal protection.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:58:29Z (GMT). No. of bitstreams: 1
ntu-102-R00B45008-1.pdf: 2142609 bytes, checksum: 1f1c3c2e7751499643a714135b16b35c (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要....................................................i
Abstract.................................................iii
Introduction...............................................1
1. Shrimp white spot syndrome virus...................1
1.1 Virus..............................................1
1.2 WSSV infection and transmission...................3
1.3 Strategies of control WSSV.........................5
2. Anti-Viral Biologics :AP-1........................11
2.1 Development of WSSV Inhibitor – AP-1..............11
2.2 Single chain fragment variable region AP-1........12
3. Lactic acid bacteria gene expression system.......14
3.1. Lactic acid bacteria (LAB)......................14
3.2. Nisin-controlled gene expression system(NICE)...15
4. Aim...............................................16
Material & Method.........................................17
1. Material..........................................17
1.1 Biologic material.................................17
1.2 Reaction reagents and mediums.....................19
1.3 Instruments and equipment.........................24
2. Method............................................26
2.1 sAP-1 gene cloning & plasmid construct............26
2.2 sAP-1 expression..................................30
2.3 sAP-1 purification................................34
2.4 Analysis of sAP-1 function by ELISA...............35
2.5 WSSV virus challenge assay........................37
2.6 Quantification of WSSV by Real-time PCR...........38
Result....................................................40
1. sAP-1 gene cloning & plasmid construct............40
2. sAP-1 expression..................................40
3. sAP-1 purification................................41
4. Analysis of sAP-1 Function by ELISA...............42
5. WSSV Viral Challenge assay........................42
6. Quantification of WSSV by Real-Time PCR...........43
Discussion................................................44
1. sAP-1 gene cloning & plasmid construct............44
2. sAP-1 expression..................................44
3. Analysis of sAP-1 Function by ELISA...............46
4. sAP-1 Purification................................46
5. WSSV Viral Challenge..............................47
6. Quantification of WSSV by Real-Time PCR...........47
Conclusion................................................48
References................................................49
Table.....................................................69
Figure....................................................71
dc.language.isoen
dc.subject蝦類白點症病毒zh_TW
dc.subject大腸桿菌表現系統zh_TW
dc.subjectNisin 調控表現系統zh_TW
dc.subject單鍊抗體zh_TW
dc.subject抗病毒生物製劑zh_TW
dc.subjectanti-viral biologics.en
dc.subjectE.coli expression systemen
dc.subjectNisin Controlled gene Expression systemen
dc.subjectSingle-chain variable fragmenten
dc.subjectshrimp white spot syndrome virusen
dc.title以生物製劑防治蝦類白點症病毒水平傳染zh_TW
dc.titleThe Application of Biologics in the Prevention of Horizontal
Transmitted White Spot Syndrome Virus
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖一久(I-Chiu Liao),彭正(Cheng Peng),王涵青(Han-Ching Wang)
dc.subject.keyword蝦類白點症病毒,大腸桿菌表現系統,Nisin 調控表現系統,單鍊抗體,抗病毒生物製劑,zh_TW
dc.subject.keywordshrimp white spot syndrome virus,E.coli expression system,Nisin Controlled gene Expression system,Single-chain variable fragment,anti-viral biologics.,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2013-08-08
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved