Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6127
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫啟光
dc.contributor.authorYu-Hsiang Chengen
dc.contributor.author鄭宇翔zh_TW
dc.date.accessioned2021-05-16T16:21:31Z-
dc.date.available2013-07-31
dc.date.available2021-05-16T16:21:31Z-
dc.date.copyright2013-07-31
dc.date.issued2013
dc.date.submitted2013-07-29
dc.identifier.citation[1] B. R. Masters and P. T. C. So, Handbook of biomedical nonlinear optical microscopy. Oxford: Oxford University Press, 2008.
[2] K. Konig, 'Clinical multiphoton tomography,' Journal of biophotonics 1(1), 13 (2008).
[3] M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, 'In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,' Journal of Investigative Dermatology 104(6), 946 (1995).
[4] M. Rajadhyaksha, S. Gonzalez, J. M. Zavislan, R. R. Anderson, and R. H. Webb, 'In vivo confocal scanning laser microscopy of human skin II: Advances in instrumentation and comparison with histology1,' Journal of Investigative Dermatology 113(3), 293 (1999).
[5] Y. Guo, P. Ho, A. Tirksliunas, F. Liu, and R. Alfano, 'Optical harmonic generation from animal tissues by the use of picosecond and femtosecond laser pulses,' Applied optics 35(34), 6810 (1996).
[6] T.-M. Liu, S.-P. Tai, C.-H. Yu, Y.-C. Wen, S.-W. Chu, L.-J. Chen, M. R. Prasad, K.-J. Lin, and C.-K. Sun, 'Measuring plasmon-resonance enhanced third-harmonic χ (3) of Ag nanoparticles,' Applied Physics Letters 89(4), 043122 (2006).
[7] C. F. Chang, C. H. Yu, and C. K. Sun, 'Multi-photon resonance enhancement of third harmonic generation in human oxyhemoglobin and deoxyhemoglobin,' J Biophotonics 3(10-11), 678 (2010).
[8] W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, 'Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,' Proceedings of the National Academy of Sciences 100(12), 7075 (2003).
[9] J. A. Palero, H. S. De Bruijn, A. van der Ploeg van den Heuvel, H. J. Sterenborg, and H. C. Gerritsen, 'Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues,' Biophysical journal 93(3), 992 (2007).
[10] G. O. Clay, A. C. Millard, C. B. Schaffer, J. Aus-der-Au, P. S. Tsai, J. A. Squier, and D. Kleinfeld, 'Spectroscopy of third-harmonic generation: evidence for resonances in model compounds and ligated hemoglobin,' JOSA B 23(5), 932 (2006).
[11] C. F. Chang, H. C. Chen, M. J. Chen, W. R. Liu, W. F. Hsieh, C. H. Hsu, C. Y. Chen, F. H. Chang, C. H. Yu, and C. K. Sun, 'Direct backward third-harmonic generation in nanostructures,' Opt Express 18(7), 7397 (2010).
[12] S. W. Chu, S. P. Tai, M. C. Chan, C. K. Sun, I. C. Hsiao, C. H. Lin, Y. C. Chen, and B. L. Lin, 'Thickness dependence of optical second harmonic generation in collagen fibrils,' Opt Express 15(19), 12005 (2007).
[13] D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, 'Third-harmonic microscopy with a titanium–sapphire laser,' Applied Physics B 74(1), s97 (2002).
[14] A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, 'Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review,' Journal of Innovative Optical Health Sciences 4(1), 9 (2011).
[15] R. R. Anderson and J. A. Parrish, 'The optics of human skin,' J Invest Dermatol 77(1), 13 (1981).
[16] M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, 'Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,' J Biomed Opt 14(1), 010508 (2009).
[17] D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, 'Deep tissue multiphoton microscopy using longer wavelength excitation,' Optics express 17(16), 13354 (2009).
[18] T. Yasui, Y. Takahashi, M. Ito, S. Fukushima, and T. Araki, 'Ex vivo and in vivo second-harmonic-generation imaging of dermal collagen fiber in skin: comparison of imaging characteristics between mode-locked Cr: forsterite and Ti: sapphire lasers,' Applied optics 48(10), D88 (2009).
[19] C. Sheppard and D. Shotton, Confocal laser scanning microscopy. Oxford New York: BIOS Scientific; Springer, in association with the Royal Microscopical Society, 1997.
[20] J. Squier and M. Muller, 'High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,' Review of Scientific Instruments 72(7), 2855 (2001).
[21] G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell, '3-dimensional imaging of collagen using second harmonic generation,' Journal of structural biology 141(1), 53 (2003).
[22] T.-H. Tsai, S.-P. Tai, W.-J. Lee, H.-Y. Huang, Y.-H. Liao, and C.-K. Sun, 'Optical signal degradation study in fixed human skin using confocal microscopy and higher-harmonic optical microscopy,' Opt. Express 14(2), 749 (2006).
[23] I. H. Chen, S. W. Chu, C. K. Sun, P. C. Cheng, and B. L. Lin, 'Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti : sapphire and Cr : forsterite laser sources,' Optical and Quantum Electronics 34(12), 1251 (2002).
[24] C. S. Hsieh, S. U. Chen, Y. W. Lee, Y. S. Yang, and C. K. Sun, 'Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos,' Opt Express 16(15), 11574 (2008).
[25] S.-Y. Chen, H.-Y. Wu, and C.-K. Sun, 'In vivo harmonic generation biopsy of human skin,' Journal of Biomedical Optics 14(6), 060505 (2009).
[26] S. Y. Chen, S. U. Chen, H. Y. Wu, W. J. Lee, Y. H. Liao, and C. K. Sun, 'In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy,' Ieee Journal of Selected Topics in Quantum Electronics 16(3), 478 (2010).
[27] S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Zhang, H.-L. Liu, and C.-K. Sun, 'Optical biopsy of fixed human skin with backward-collected optical harmonics signals,' Optics express 13(20), 8231 (2005).
[28] R. W. Boyd, Nonlinear optics, 3rd ed. Burlington, MA: Academic Press, 2008.
[29] D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, 'Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,' Proceedings of the National Academy of Sciences 100(12), 7081 (2003).
[30] V. Petricevic, S. Gayen, R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, 'Laser action in chromium‐doped forsterite,' Applied Physics Letters 52(13), 1040 (1988).
[31] A. Seas, V. Petričević, and R. Alfano, 'Continuous-wave mode-locked operation of a chromium-doped forsterite laser,' Optics letters 16(21), 1668 (1991).
[32] I. Thomann, L. Hollberg, S. A. Diddams, and R. Equall, 'Chromium-doped forsterite: dispersion measurement with white-light interferometry,' Applied optics 42(9), 1661 (2003).
[33] T. J. Carrig and C. R. Pollock, 'Tunable, cw operation of a multiwatt forsterite laser,' Opt Lett 16(21), 1662 (1991).
[34] W. Koechner and SpringerLink (Online service), Solid-State Laser Engineering. New York, NY: Springer, 2006.
[35] H. A. Haus, J. G. Fujimoto, and E. P. Ippen, 'Analytic Theory of Additive Pulse and Kerr Lens Mode-Locking,' Ieee Journal of Quantum Electronics 28(10), 2086 (1992).
[36] A. Agnesi, E. Piccinini, and G. C. Reali, 'Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+: Forsterite lasers,' Optics communications 135(1-3), 77 (1997).
[37] H. A. Haus, 'Mode-locking of lasers,' Selected Topics in Quantum Electronics, IEEE Journal of 6(6), 1173 (2000).
[38] Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, 'Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable-absorber mirror,' Optics letters 22(13), 1006 (1997).
[39] V. Yanovsky, Y. Pang, F. Wise, and B. Minkov, 'Generation of 25-fs pulses from a self-mode-locked Cr: forsterite laser with optimized group-delay dispersion,' Optics letters 18(18), 1541 (1993).
[40] S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, 'Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,' Journal of Biomedical Optics 11(2), 020501 (2006).
[41] G. P. Agrawal, Nonlinear fiber optics, 5th ed. Oxford, UK ; Waltham, MA: Academic Press, 2013.
[42] J. M. Dudley, G. Genty, and S. Coen, 'Supercontinuum generation in photonic crystal fiber,' Reviews of Modern Physics 78(4), 1135 (2006).
[43] J. G. Fujimoto, A. M. Weiner, and E. P. Ippen, 'Generation and Measurement of Optical Pulses as Short as 16 Fs,' Applied Physics Letters 44(9), 832 (1984).
[44] J. M. Halbout and D. Grischkowsky, '12-fs ultrashort optical pulse compression at a high repetition rate,' Applied Physics Letters 45(12), 1281 (1984).
[45] W. Knox, R. Fork, M. Downer, R. Stolen, C. Shank, and J. Valdmanis, 'Optical pulse compression to 8 fs at a 5-kHz repetition rate,' Applied Physics Letters 46(1120 (1985).
[46] R. Wolleschensky, T. Feurer, R. Sauerbrey, and U. Simon, 'Characterization and optimization of a laser-scanning microscope in the femtosecond regime,' Applied Physics B: Lasers and Optics 67(1), 87 (1998).
[47] C. Soeller and M. Cannell, 'Construction of a two-photon microscope and optimisation of illumination pulse duration,' Pflugers Archiv 432(3), 555 (1996).
[48] J. B. Guild, C. Xu, and W. W. Webb, 'Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence,' Applied optics 36(1), 397 (1997).
[49] X. Liang, W. Hu, and L. Fu, 'Pulse compression in two-photon excitation fluorescence microscopy,' Optics express 18(14), 14893 (2010).
[50] G. Steinmeyer, 'A review of ultrafast optics and optoelectronics,' Journal of Optics A: Pure and Applied Optics 5(1), R1 (2003).
[51] A. Baltuska, Z. Y. Wei, M. S. Pshenichnikov, and D. A. Wiersma, 'Optical pulse compression to 5 fs at a 1-MHz repetition rate,' Optics letters 22(2), 102 (1997).
[52] R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, 'Compression of optical pulses to six femtoseconds by using cubic phase compensation,' Opt. Lett. 12(7), 483 (1987).
[53] R. L. Fork, O. E. Martinez, and J. P. Gordon, 'Negative Dispersion Using Pairs of Prisms,' Optics letters 9(5), 150 (1984).
[54] A. M. Weiner, Ultrafast optics. Hoboken, N.J.: Wiley, 2009.
[55] J. C. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, 'Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,' Appl Opt 24(9), 1270 (1985).
[56] K. Kikuchi, 'Highly sensitive interferometric autocorrelator using Si avalanche photodiode as two-photon absorber,' Electronics Letters 34(1), 123 (1998).
[57] J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, 'Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,' Optics letters 22(17), 1344 (1997).
[58] D. Reid, M. Padgett, C. McGowan, W. Sleat, and W. Sibbett, 'Light-emitting diodes as measurement devices for femtosecond laser pulses,' Optics letters 22(4), 233 (1997).
[59] A. Sharma, M. Raghuramaiah, P. Naik, and P. Gupta, 'Use of commercial grade light emitting diode in auto-correlation measurements of femtosecond and picosecond laser pulses at 1054 nm,' Optics communications 246(1), 195 (2005).
[60] P. Horowitz, W. Hill, and T. C. Hayes, The art of electronics vol. 2: Cambridge university press Cambridge, 1989.
[61] A. Majewska, G. Yiu, and R. Yuste, 'A custom-made two-photon microscope and deconvolution system,' Pflugers Archiv 441(2-3), 398 (2000).
[62] Q. Nguyen, N. Callamaras, C. Hsieh, and I. Parker, 'Construction of a two-photon microscope for video-rate Ca2+ imaging,' Cell calcium 30(6), 383 (2001).
[63] M. Muller, J. Schmidt, S. L. Mironov, and D. W. Richter, 'Construction and performance of a custom-built two-photon laser scanning system,' Journal of Physics D: Applied Physics 36(14), 1747 (2003).
[64] D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, 'Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,' nature protocols 6(10), 1500 (2011).
[65] G. F. Marshall and G. E. Stutz, Handbook of optical and laser scanning, 2nd ed. Boca Raton, FL: CRC Press, 2012.
[66] J. B. Pawley, Handbook of biological confocal microscopy, 3rd ed. New York: Springer, 2006.
[67] R. D. Frostig, In vivo optical imaging of brain function, 2nd ed. Boca Raton: CRC Press, 2009.
[68] F. Helmchen and W. Denk, 'Deep tissue two-photon microscopy,' Nature methods 2(12), 932 (2005).
[69] D. B. Murphy and M. W. Davidson, Fundamentals of light microscopy and electronic imaging: Wiley. com, 2012.
[70] K. Konig, A. Ehlers, I. Riemann, S. Schenkl, R. Buckle, and M. Kaatz, 'Clinical two‐photon microendoscopy,' Microscopy research and technique 70(5), 398 (2007).
[71] S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, 'In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy,' Optics express 14(13), 6178 (2006).
[72] M.-R. Tsai, S.-Y. Chen, D.-B. Shieh, P.-J. Lou, and C.-K. Sun, 'In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy,' Biomedical optics express 2(8), 2317 (2011).
[73] M. R. Tsai, D. B. Shieh, P. J. Lou, C. F. Lin, and C. K. Sun, 'Characterization of oral squamous cell carcinoma based on higher‐harmonic generation microscopy,' Journal of biophotonics 5(5‐6), 415 (2012).
[74] C. Squier and K. Brogden, Human oral mucosa: development, structure and function: Wiley. com, 2011.
[75] R. Kitamura, L. Pilon, and M. Jonasz, 'Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,' Applied optics 46(33), 8118 (2007).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6127-
dc.description.abstract以鉻貴橄欖石鎖模雷射(中心波長一千兩百六十奈米)作為激發光源,吾人建立起一套高速非線性顯微影像系統用以協助生醫研究,橫向解析度可達五百奈米,縱向解析度約為兩微米。根據觀測物光學特性不同,可以利用適當的非線性效應例如雙光子激發螢光、二倍頻或三倍頻等來產生影像對比。本影像系統可以二十八幀率紀錄四通道影像(單張影像五百一十二像素見方),並即時套以偽色呈現於電腦螢幕上。此高速系統適用於活體觀測,目前已成功取得活體人體皮膚影像及活體人體口腔黏膜影像。
除了基本的顯微術成像,為了增強非線性信號與激發更寬頻非線性響應,在雷射光進入顯微鏡之前,會經由光纖展寬雷射頻譜,再由稜鏡對進行色散補償及脈衝壓縮。壓縮後之雷射脈衝寬度約為二十四飛秒,波長寬度約為八十二奈米。經此雷射脈衝激發出的寬頻的三倍頻信號會依據波長分割成三通道紀錄下來,藉著分析每一像素在不同波長之信號強度,可以研究觀測物各部位產生非線性極化之頻率響應。
zh_TW
dc.description.abstractUsing a Cr:forsterite mode-locked laser (centered at 1260 nm) as the excitation source, I set up a high-speed nonlinear microscope with sub-micron lateral resolution for biomedical imaging applications. Contrast can come from two-photon excitation fluorescence, second harmonic generation, or third harmonic generation. 4 channel images (512 pixels x 512 pixels) could be recorded at a frame rate of 28 fps and shown with pseudo colors on screen in realtime. This microscopy system was successfully applied to human skin imaging and human oral mucosa imaging in vivo.
In order to enhance nonlinear signals and excite broadband harmonic responses, the laser pulses were spectrally broadened by a single-mode fiber and then temporally compressed by a prism pair before entering the microscope. The compressed pulse width was 24 fs and the spectrum bandwidth was 82 nm. The broadband third harmonic signals, excited by the compressed pulses, were divided into 3 channels based on different wavelength sections. By analyzing 3 color images pixel by pixel, the frequency response of the nonlinear susceptibility of the specimen can be studied.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:21:31Z (GMT). No. of bitstreams: 1
ntu-102-R99941123-1.pdf: 51780221 bytes, checksum: cead3e2d1298c1991f1f9c1a3e02ba22 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT III
CONTENTS IV
CHAPTER 1 INTRODUCTION 1
1.1 Thesis scope 1
1.2 Optical Microscopy for In Vivo Applications 1
1.3 Nonlinear Optics 6
CHAPTER 2 BROADBAND EXCITATION SOURCE 8
2.1 Cr:forsterite Mode-locked Laser 8
2.2 Spectral Broadening 13
2.3 Temporal Compression 18
2.4 Interferometric Autocorrelator 21
CHAPTER 3 HIGH-SPEED LASER SCANNING MICROSCOPY SYSTEM 25
3.1 System Overview 25
3.2 Scanning Mechanism and Design 28
3.3 Nonlinear Signal Detection 36
3.4 Electronic Acquisition System Optimization 38
3.5 Synchronized XYZ Sectioning 43
3.6 Mechanical Structure 44
3.7 Bright Field Microscopy 45
3.8 Miniature Probe 46
CHAPTER 4 APPLICATIONS 48
4.1 In Vivo Human Skin Imaging 48
4.2 In Vivo Human Oral Mucosa Imaging 51
4.3 Spectroscopic Third Harmonic Generation Microscopy 54
CHAPTER 5 SUMMARY 61
REFERENCE 62
dc.language.isoen
dc.subject活體影像zh_TW
dc.subject鉻貴橄欖石雷射zh_TW
dc.subject脈衝壓縮zh_TW
dc.subject非線性顯微術zh_TW
dc.subject倍頻顯微術zh_TW
dc.subjectNonlinear microscopyen
dc.subjectIn vivo imagingen
dc.subjectHarmonic generation microscopyen
dc.subjectCr:Forsterite laseren
dc.subjectPulse compressionen
dc.title快速寬頻三倍頻顯微影像系統zh_TW
dc.titleHigh-speed Broadband Third Harmonic Generation Microscopy Systemen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee汪治平,陳顯禎,高甫仁
dc.subject.keyword鉻貴橄欖石雷射,脈衝壓縮,非線性顯微術,倍頻顯微術,活體影像,zh_TW
dc.subject.keywordCr:Forsterite laser,Pulse compression,Nonlinear microscopy,Harmonic generation microscopy,In vivo imaging,en
dc.relation.page70
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf50.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved