請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61275完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王立義(Lee-Yih Wang) | |
| dc.contributor.author | Chun-Yao Wang | en |
| dc.contributor.author | 王俊堯 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:57:34Z | - |
| dc.date.available | 2014-08-14 | |
| dc.date.copyright | 2013-08-14 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-08 | |
| dc.identifier.citation | [1] N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Science, 258 (1992)
1474-1476. [2] Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Chem. Rev., 109 (2009) 5868-5923. [3] N.S. Sariciftci, D. Braun, C. Zhang, V.I. Srdanov, A.J. Heeger, G. Stucky, F. Wudl, Appl. Phys. Lett., 62 (1993) 585-587. [4] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science, 270 (1995) 1789-1791. [5] F. Zhang, D. Wu, Y. Xu, X. Feng, J. Mater. Chem., 21 (2011) 17590-17600. [6] P.-L.T. Boudreault, A. Najari, M. Leclerc, Chem. Mater., 23 (2010) 456-469. [7] M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Adv. Mater., 18 (2006) 789-794. [8] S. Gunes, H. Neugebauer, N.S. Sariciftci, Chem. Rev., 107 (2007) 1324-1338. [9] G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C.J. Brabec, Adv. Mater., 20 (2008) 579-583. [10] L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, Y. Yang, Nat. Photon, 6 (2012) 180-185. [11] H.J. Son, F. He, B. Carsten, L. Yu, J. Mater. Chem., 21 (2011) 18934-18945. [12] A. Moliton, J.-M. Nunzi, Polym. Int., 55 (2006) 583-600. [13] R.D. McCullough, S. Tristram-Nagle, S.P. Williams, R.D. Lowe, M. Jayaraman, J. Am. Chem. Soc., 115 (1993) 4910-4911. [14] J. Hou, L. Huo, C. He, C. Yang, Y. Li, Macromolecules, 39 (2006) 594-603. [15] J. Hou, C. Yang, C. He, Y. Li, Chem. Commun., (2006) 871-873. [16] J. Hou, Z.a. Tan, Y. Yan, Y. He, C. Yang, Y. Li, J. Am. Chem. Soc., 128 (2006) 4911-4916. [17] E. Zhou, Z.a. Tan, L. Huo, Y. He, C. Yang, Y. Li, The Journal of Physical Chemistry B, 110 (2006) 26062-26067. [18] Y. Zou, W. Wu, G. Sang, Y. Yang, Y. Liu, Y. Li, Macromolecules, 40 (2007) 7231-7237. [19] Y. Zou, G. Sang, W. Wu, Y. Liu, Y. Li, Synth. Met., 159 (2009) 182-187. [20] Z.-G. Zhang, S. Zhang, J. Min, C. Chui, J. Zhang, M. Zhang, Y. Li, Macromolecules, 45 (2011) 113-118. [21] Z. Gu, L. Deng, H. Luo, X. Guo, H. Li, Z. Cao, X. Liu, X. Li, H. Huang, Y. Tan, Y. Pei, S. Tan, J. Polym. Sci., Part A: Polym. Chem., 50 (2012) 3848-3858. [22] Z. Gu, P. Shen, S.-W. Tsang, Y. Tao, B. Zhao, P. Tang, Y. Nie, Y. Fang, S. Tan, Chem. Commun., 47 (2011) 9381-9383. [23] C. Duan, K.-S. Chen, F. Huang, H.-L. Yip, S. Liu, J. Zhang, A.K.Y. Jen, Y. Cao, Chem. Mater., 22 (2010) 6444-6452. [24] Z.-G. Zhang, Y.-L. Liu, Y. Yang, K. Hou, B. Peng, G. Zhao, M. Zhang, X. Guo, E.-T. Kang, Y. Li, Macromolecules, 43 (2010) 9376-9383. [25] C. Duan, W. Cai, F. Huang, J. Zhang, M. Wang, T. Yang, C. Zhong, X. Gong, Y. Cao, Macromolecules, 43 (2010) 5262-5268. [26] F. Huang, K.-S. Chen, H.-L. Yip, S.K. Hau, O. Acton, Y. Zhang, J. Luo, A.K.Y. Jen, J. Am. Chem. Soc., 131 (2009) 13886-13887. [27] J. Roncali, P. Frere, P. Blanchard, R. de Bettignies, M. Turbiez, S. Roquet, P. Leriche, Y. Nicolas, Thin Solid Films, 511–512 (2006) 567-575. [28] S. Roquet, R. de Bettignies, P. Leriche, A. Cravino, J. Roncali, J. Mater. Chem., 16 (2006) 3040-3045. [29] C.-Q. Ma, M. Fonrodona, M.C. Schikora, M.M. Wienk, R.A.J. Janssen, P. Bauerle, Adv. Funct. Mater., 18 (2008) 3323-3331. [30] A.B. Tamayo, B. Walker, T.-Q. Nguyen*, The Journal of Physical Chemistry C, 112 (2008) 11545-11551. [31] A.B. Tamayo, M. Tantiwiwat, B. Walker, T.-Q. Nguyen, The Journal of Physical Chemistry C, 112 (2008) 15543-15552. [32] M. Tantiwiwat, A. Tamayo, N. Luu, X.-D. Dang, T.-Q. Nguyen, The Journal of Physical Chemistry C, 112 (2008) 17402-17407. [33] A. Tamayo, T. Kent, M. Tantitiwat, M.A. Dante, J. Rogers, T.-Q. Nguyen, Energy & Environmental Science, 2 (2009) 1180-1186. [34] B. Walker, A.B. Tamayo, X.-D. Dang, P. Zalar, J.H. Seo, A. Garcia, M. Tantiwiwat, T.-Q. Nguyen, Adv. Funct. Mater., 19 (2009) 3063-3069. [35] B. Walker, X. Han, C. Kim, A. Sellinger, T.-Q. Nguyen, ACS Applied Materials & Interfaces, 4 (2011) 244-250. [36] G.C. Welch, L.A. Perez, C.V. Hoven, Y. Zhang, X.-D. Dang, A. Sharenko, M.F. Toney, E.J. Kramer, T.-Q. Nguyen, G.C. Bazan, J. Mater. Chem., 21 (2011) 12700-12709. [37] Y. Sun, G.C. Welch, W.L. Leong, C.J. Takacs, G.C. Bazan, A.J. Heeger, Nat Mater, 11 (2012) 44-48. [38] C.J. Takacs, Y. Sun, G.C. Welch, L.A. Perez, X. Liu, W. Wen, G.C. Bazan, A.J. Heeger, J. Am. Chem. Soc., 134 (2012) 16597-16606. [39] G.C. Welch, R.C. Bakus, S.J. Teat, G.C. Bazan, J. Am. Chem. Soc., 135 (2013) 2298-2305. [40] A.K.K. Kyaw, D.H. Wang, V. Gupta, J. Zhang, S. Chand, G.C. Bazan, A.J. Heeger, Adv. Mater., 25 (2013) 2397-2402. [41] A.K.K. Kyaw, D.H. Wang, V. Gupta, W.L. Leong, L. Ke, G.C. Bazan, A.J. Heeger, ACS Nano, 7 (2013) 4569-4577. [42] J.A. Love, C.M. Proctor, J. Liu, C.J. Takacs, A. Sharenko, T.S. van der Poll, A.J. Heeger, G.C. Bazan, T.-Q. Nguyen, Adv. Funct. Mater., (2013) . [43] Y. Liu, J. Zhou, X. Wan, Y. Chen, Tetrahedron, 65 (2009) 5209-5215. [44] Y. Liu, X. Wan, B. Yin, J. Zhou, G. Long, S. Yin, Y. Chen, J. Mater. Chem., 20 (2010) 2464-2468. [45] Z. Li, G. He, X. Wan, Y. Liu, J. Zhou, G. Long, Y. Zuo, M. Zhang, Y. Chen, Advanced Energy Materials, 2 (2012) 74-77. [46] G. He, Z. Li, X. Wan, Y. Liu, J. Zhou, G. Long, M. Zhang, Y. Chen, J. Mater. Chem., 22 (2012) 9173-9180. [47] Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, J. You, Y. Yang, Y. Chen, Advanced Energy Materials, 1 (2011) 771-775. [48] Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, Y. Chen, Adv. Mater., 23 (2011) 5387-5391. [49] J. Zhou, X. Wan, Y. Liu, G. Long, F. Wang, Z. Li, Y. Zuo, C. Li, Y. Chen, Chem. Mater., 23 (2011) 4666-4668. [50] J. Zhou, X. Wan, Y. Liu, Y. Zuo, Z. Li, G. He, G. Long, W. Ni, C. Li, X. Su, Y. Chen, J. Am. Chem. Soc., 134 (2012) 16345-16351. [51] J. Zhou, Y. Zuo, X. Wan, G. Long, Q. Zhang, W. Ni, Y. Liu, Z. Li, G. He, C. Li, B. Kan, M. Li, Y. Chen, J. Am. Chem. Soc., (2013). [52] L. Kurti and B. Czako, “Strategic Applications of Named Reactions in Organic Synthesis”, Elsevier Academic Press, 2005 [53] B. P. Mundy, “Name Reactions And Reagents In Organic Synthesis”, Second Edition, 2005 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61275 | - |
| dc.description.abstract | 本篇論文分為兩個主題,分別探討應用在混摻異質介面太陽能電池之二維共軛高分子以及二維共軛小分子的各種合成性質與探討。在第一部分,我們改變二維共軛高分子側鏈之鍵結位址,合成出P(v-3EHT-BT)以及P(h-3EHT-BT)兩種高分子,並探討這些噻吩(Thiophene)共軛鏈段所連接的型態對於二維共軛高分子之光電、物理特徵的影響。研究中,我們利用核磁共振光譜(NMR)與質譜(Mass)鑑定合成出來的分子結構;再利用紫外光/可見光光譜儀分析高分子側鏈不同的連結方向對於吸收光譜的影響,並利用兩者不同的共軛方式探討其結果;接著藉由電化學分析法以及低能量表面功函數量測儀(AC2)測量兩高分子的HOMO能階;使用熱重損失分析儀(TGA)、微差掃描分析儀(DSC)測量兩者的熱性質;最後利用X光繞射圖譜(XRD)探討其結晶性。我們發現側鏈與主鏈垂直之P(v-3EHT-BT),因為其側鏈對於吸收的幫助更大而在紫外光/可見光光譜上可以測得更大的吸收係數;相對地,側鏈與主鏈平行之P(h-3EHT-BT)則因為其更高的對稱性,而使其在X光繞射圖譜上有明顯的吸收峰。
第二個主題承接第一個主題,利用第一部分所得到之結果,即主鏈平行於側鏈之P(h-3EHT-BT)具有一定的結晶性,以此結構為基礎,合成出一系列二維共軛小分子。與第一部分相同,我們也利用核磁共振光譜、質譜分析、以及元素分析鑑定所合成之分子;也利用紫外光/可見光光譜分析、電化學分析、熱重損失分析、微差掃描分析、以及低能量表面功函數量測探討其性質。在紫外光/可見光光譜的量測可以發現,此系列的小分子可以藉由共軛鏈段長短或拉電子基(electron-withdrawing group)的改變調控吸收光譜;並在X光繞射圖譜中,皆可發現一定的結晶性;最後,在低能量表面功函數量測(AC2)的分析可知,未來將可再增加推電子基或更加延長共軛,促使最高佔有電子之軌域(HOMO)提高。 | zh_TW |
| dc.description.abstract | This research focuses on two topics, whichincludes the synthesis and characterization of two-dimensional conjugated polymers and macromoleculesfor high-efficiency bulk-heterojunction solar cells application. At first,two-dimensional conjugated polymers, P(v-3EHT-BT) and P(h-3EHT-BT) in which a bithiophenewas employed as comonomer to reduce the crowdedness of side chains, and terthiophene units were bonded to the backbone vertically and horizontally, respectively, were designed, synthesized and characterized. The molecular structure of these polymers and the related intermediates were characterized using nuclear magnetic resonance(NMR) and mass spectrometry. Moreover, UV-visible spectroscopy was applied to examine how the side-chain architecture affects the light absorption properties of the polymers. Electrochemical analysis together with AC2 were used to determinethe band gap and energy levels, thermogravimetry analyzer (TGA) and differential scanning calorimeter (DSC) to investigate the thermal properties, and, finally, X-ray diffraction(XRD) spectrometer to study the crystallinity of the polymers. We found that the conjugation length of the side chains in P(v-3EHT-BT) is longer than that in P(h-3EHT-BT), causing the red-shift of the absorption band of side chains to visible region and the overlap with the absorption band of main chain that results in a substantial increase in the extinction coefficient of the polymer. Conversely, the thin film of P(h-3EHT-BT) possesses a strong X-ray diffraction peak, indicating the formation of orderly packed polymer chains, however, no such crystallization peak was observed for P(v-3EHT-BT).
In the second topic, following the conclusion of the first part, i.e. horizontal orientation of side-chains along the polythiophene backbone can effectively promotethe formation of polymer crystallites, a series of two-dimensional conjugated macromolecules in which two linear conjugated moieties are connected by a vinyl bridge in parallel, was designed and developed. Similarly, the structure of these molecules were characterized by NMR, mass spectrometry and elemental analysis; their optical, electronic and thermal properties as well as crystallization behavior were investigated by UV-visible spectroscopy, electrochemical analysis, AC2, TGA, DSC, and XRD. Experimental results demonstrates all molecules developed herein have distinct crystallization peaks. More importantly, the absorption spectra, band-gap and energy levels of the molecules can be fine-tuned by controlling the conjugation length of two sides or by introducing proper electron-withdrawing units. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:57:34Z (GMT). No. of bitstreams: 1 ntu-102-R00549022-1.pdf: 23081010 bytes, checksum: 5863cb1c49c8aac889193ca7e14e735b (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 III ABSTRACT IV 目錄 VI 圖目錄 VIII 表目錄 XIV 第壹章 緒論 1 1-1 前言 1 1-2 高分子太陽能電池 2 1-2-1 高分子太陽能電池之結構與發展 2 1-2-2 高分子太陽能電池之工作原理 5 1-3 高分子太陽能電池之材料 9 1-3-1 高分子材料與元件參數的關係 9 1-3-2 高分子材料的結構設計 11 1-4 二維共軛高分子之文獻回顧 14 1-5 共軛小分子之文獻回顧 19 第貳章 側鏈連結方向對於二維共軛高分子之影響 29 2-1 前言與研究動機: 29 2-2 實驗步驟: 33 2-2-1 化學式劑與除水方式 33 2-2-2 實驗儀器: 36 2-2-3 合成步驟 38 2-3 結果與討論: 59 2-3-1 核磁共振光譜分析: 59 2-3-2 質譜分析(ESI): 66 2-3-3 光學性質分析(紫外光-可見光分光光譜儀) 68 2-3-4 電化學性質分析 75 2-3-5 X光繞射圖譜分析 77 2-3-6 熱性質分析(TGA、DSC) 79 2-3-7 低能量表面功函數量測儀(AC2) 84 2-4 結論 87 第參章 利用乙烯基連結之二維共軛分子之合成與性質探討 88 3-1 前言與研究動機 : 88 3-2 實驗步驟 92 3-2-1 化學式劑與除水方式 92 3-2-2 實驗儀器: 92 3-2-3 合成步驟 93 3-3-2 質譜分析(MALDI): 125 3-3-3 元素分析: 129 3-3-4 光學性質分析(紫外光-可見光分光光譜儀) 130 3-3-5 電化學性質分析 140 3-3-6 X光繞射圖譜分析 143 3-3-7 熱性質分析(DSC、TGA) 146 3-3-8 低能量表面功函數量測儀(AC2) 152 3-4 結論 158 第肆章 結論與未來展望 159 第伍章 參考文獻 160 | |
| dc.language.iso | zh-TW | |
| dc.subject | 二維共軛小分子 | zh_TW |
| dc.subject | 二維共軛高分子 | zh_TW |
| dc.subject | ?吩 | zh_TW |
| dc.subject | 混摻異質介面太陽能電池 | zh_TW |
| dc.subject | two-dimensional polymers | en |
| dc.subject | conjugated polymers | en |
| dc.subject | conjugated macromolecules | en |
| dc.subject | thiophene | en |
| dc.title | 以噻吩為主幹之二維共軛分子與高分子之合成與性質探討 | zh_TW |
| dc.title | Synthesis and Characterization of Two-dimensional Thiophene-Based Conjugated Polymers and Macromolecules | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 梁文傑,陳錦地,戴子安 | |
| dc.subject.keyword | 二維共軛高分子,二維共軛小分子,?吩,混摻異質介面太陽能電池, | zh_TW |
| dc.subject.keyword | two-dimensional polymers,,conjugated polymers,conjugated macromolecules,thiophene, | en |
| dc.relation.page | 215 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 22.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
