請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61273完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧中仁(Chung-Jen Lu) | |
| dc.contributor.author | Chih-Hao Huang | en |
| dc.contributor.author | 黃致豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:57:27Z | - |
| dc.date.available | 2015-08-14 | |
| dc.date.copyright | 2013-08-14 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-08 | |
| dc.identifier.citation | [1] Srinivasan, M. G. and France, D. M., 1985, “Nonuniqueness in Steady-State Heat-Transfer in Prestressed Duplex Tubes – Analysis and Case-History,” Journal of Applied Mechanics-Transactions of the ASME, 52(2), pp.257-262.
[2] Li, C. and Barber, J. R., 1998, “Thermoelastic Stability of Duplex Heat Exchanger Tubes,” International Journal of Mechanical Sciences, 40(6), pp. 575-588. [3] Li, N. Y. and Barber, J. R., 1991, “Thermoelastic Instability in Planar Solidification,” International Journal of Mechanical Sciences, 33(12), pp. 945-959. [4] Yigit, F. and Barber, J. R., 1994, “Effect of Stefan Number on Thermoelastic Instabilities in Unidirectional Solidification,” International Journal of Mechanical Sciences, 36(8), pp. 707-723. [5] Ben-Zion, Y., 2001, “Dynamic Ruptures in Recent Models of Earthquake Faults,” Journal of the Mechanics and Physics of Solids, 49(9), pp.2209-2244. [6] Lee, K. J. and Barber, J. R., 1994, “An Experimental Investigation of Frictionally-Excited Thermoelastic Instability in Automotive Disk Brakes under a Drag Brake Application,” Journal of Tribology-Transactions of the ASME, 116(3), pp. 409-414. [7] Kinkaid, N. M., O’Reilly, O. M., and Papaclopoulos, P., 2003, “Automotive Disc Brake Squeal,” Journal of Sound and Vibration, 267(1), pp. 105-166. [8] Quyang, H., Cao, Q., Mottershead, J. E., and Treyde, T., 2003, “ Vibration and Squeal of a Disc Brake: Modelling and Experimental Results,” Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering, 217(D10), pp. 867-875. [9] Kao, T. K., Richmond, J. W., and Douarre, A., 2000, “Brake Disc Hot Spotting and Thermal Judder: An Experimental and Finite Element Study,” International Journal of Vehicle Design, 23(3-4), pp. 276-296. [10] Lee, K. J., and Brooks, F. W., 2003, “Hot Spotting and Judder Phenomena in Aluminum Drum Brakes,” Journal of Tribology-Transactions of the ASME, 125(1), pp. 44-51. [11] Gao, C. H., Huang, J. M., Lin, X. Z., and Tang, X. S., 2007, “Stress Analysis of Thermal Fatigue Fracture of Brake Disks Based on Thermomechanical Coupling,” Journal of Tribology-Transactions of the ASME, 129(3), pp. 536-543. [12] Przemyslaw Zagrodzki, 2009, “Thermoelastic instability in friction clutches and brakes – Transient modal analysis revealing mechanisms of excitation of unstable modes,” International Journal of Solids and Structures, 46(11-12), pp. 2463-2476 [13] Bhushan, B., 1987, “Magnetic Head-Media Interface Temperatures .2. Application to Magnetic Tapes,” Journal of Tribology-Transactions of the ASME, 109(2), pp. 252-256. [14] Phipps, P. B. P. 1990, “Measurements of the Wear of a Thin-Film Disk,” in 1990 International Magnetics Conf (1990 Intermag), Brighton, England. pp. 2496-2498. [15] Afferrante, L. and Ciavarella, M., 2008, “Thermo-Elastic Dynamic Instability (TEDI) – a Review of Recent Results,” Journal of Engineering Mathematics, 61(2-4), pp. 285-300. [16] Barber, J. R., 1978, “Contact Problems Involving a Cooled Punch,” Journal of Elasticity, 8(4), pp. 409-423. [17] Panek, C., 1980, “A Thermomechanical Example of Auto-Oscillation,” Journal of Applied Mechanics-Transactions of the ASME, 47(4), pp. 875-878. [18] Zhang, R. G. and Barber, J. R., 1990, “Effect of Material Properties on the Stability of Static Thermoelastic Contact,” Journal of Applied Mechanics-Transactions of the ASME, 57(2), pp. 365-369. [19] Yeo, T. and Barber, J. R., 1994, “Stability of a Semiinfinite Strip in Thermoelastic Contact with a Rigid Wall,” in Symposium on Multiphase Elasticity and the Dundurs Parameters, at the 12th US National Congress of Theoretical and Applied Mechanics, Seattle, Wa. pp. 553-567. [20] Li, C. and Barber, J. R., 1997, “Stability of Thermoelastic Contact of Two Layers of Dissimilar Materials,” Journal of Thermal Stresses, 20(2), pp. 169-184. [21] Olesiak, Z. S. and Pyryev, Y. A., 1996, “Transient Response in a One-Dimensional Model of Thermoelastic Contact,” Journal of Applied Mechanics-Transactions of the ASME, 63(3), pp. 575-581. [22] Barber, J. R., Dundurs, J., and Comninou, M., 1980, “Stability Considerations in Thermoelastic Contact,” Journal of Applied Mechanics, Transactions of the ASME, 47(4), pp. 871-874. [23] Comninou, M. and Dundurs, J., 1980, “On the Possibility of History Dependence and Instabilities in Thermoelastic Contact,” Journal of Thermal Stresses, 3(3), pp.427-433. [24] Pelesko, J. A., 1999, “Nonlinear Stability Considerations in Thermoelastic Contact,” Journal of Applied Mechanics-Transactions of the ASME, 66(1), pp. 109-116. [25] Pelesko, J. A., 2001, “Nonlinear Stability, Thermoelastic Contact, and the Barber Condition,” Journal of Applied Mechanics-Transactions of the ASME, 68(1), pp. 28-33. [26] Quinn, D. D. and Pelesko, J. A., 2002, “Generic Unfolding of the Thermoelastic Contact Instability,” International Journal of Solids and Structures, 39(1), pp. 145-157. [27] Barber, J. R., 1981, “Stability of Thermoelastic Contact for the Aldo Model,” Journal of Applied Mechanics-Transactions of the ASME, 48(3), pp. 555-558. [28] Afferrante, L. and Ciavarella, M., 2004, “The Thermoelastic Aldo Contact Model with Frictional Heating,” Journal of the Mechanics and Physics of Solids, 52(3), pp.617-640. [29] Jiaxin Zhaoa, Biao Ma , Heyan Li , Yunbo Yi, 2013, “The effect of lubrication film thickness on thermoelastic instability under fluid lubricating condition,” Wear, 303(1-2), pp. 146-153 [30] 黃頌庭, 2011, “Barber 邊界條件下Aldo模型的熱彈性穩定分析, ” 台灣大學碩士論文.303(1-2) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61273 | - |
| dc.description.abstract | 熱彈問題在許多領域上有重要的應用。事實上,有許多工業問題都起因於接觸表面上的熱彈不穩定性。熱彈問題與接觸表面的熱阻有很大的關係。傳統上,熱阻被定義為接觸壓力的不連續函數:接觸壓力不為零時熱阻為零,接觸壓力為零時熱阻為無窮大。在傳統的熱阻定義下,熱彈問題可能沒有平衡解。為了解決這個問題,Barber提出了一個新的熱阻模型:熱阻會隨著接觸表面的壓力或間隙而連續地改變。這個熱阻條件被稱為Barber熱阻條件或Barber條件。為了說明Barber熱阻的特性,Barber分析了一個簡化的粗糙面模型─Aldo模型。Aldo模型包含了一個由兩個彈性柱體支撐的剛體。經由分析這個粗糙面模型,Barber獲得了一些接觸面間熱彈特性的通則。然而,Barber的分析中並未考慮這些柱體的力學特性,例如阻尼、波傳速度等。本論文探討這些特性對Aldo模型熱彈穩定性的影響。此外,為了專注於柱體的力學特性的影響而不涉及複雜的數學運算,將連續Aldo模型進一步的簡化為離散模型。首先探討單一柱體的受力-變形關係,接著推導雙柱體模型的統御方程式。雙柱體的分歧分析奠基於單一柱體的受力-變形關係。平衡解的穩定性決定於擾動線性系統的特徵值,並由數值積分的法方來驗證。最後,我們比較Aldo模型在Barber條件下的穩定特性,我們的結果指出,柱體的力學特性會對Aldo模型的穩定性有顯著的影響。 | zh_TW |
| dc.description.abstract | Thermoelasticity has important applications in various fields. In fact, many industrial problems are resulted from thermoelastic instability at the contact interface. Thermoelasticity depends heavily on the thermal resistance at the interface. Traditionally, the thermal resistance is defined as a discontinuous function of the contact pressure: the value is zero for nonzero contact pressure and jumps to infinity as the contact pressure drops to zero. With the traditional thermal resistance, a static thermoelastic problem may not have a solution. To overcome this difficulty, Barber proposed a new model of thermal resistance: the thermal resistance changes continuously with the pressure or gap between two interacting surfaces. This new thermal resistance is referred to as Barber’s thermal condition or Barber’s condition. To show the characteristics of the new thermal resistance model, Barber analyzed a simplified surface model, the Aldo model, which consists of a rigid plate supported by two elastic rods. With this simple surface model, Barber obtained some general properties regarding the thermoelastic interactions between two contact surfaces However, Barber did not consider the effects of important mechanical properties of the rods, e.g. damping and wave velocity. This thesis aims to study the effects of the mechanical properties of the rods on the stability of the Aldo model. Moreover, to focus on the effects of the mechanical properties of the rods without involving complicated mathematical calculations, the continuous Aldo model is further simplified to a discrete model. We first investigate the load-deflection relationship of a single rod model. Then, we derive the governing equations of the two-rod Aldo system. Bifurcation analysis of the two-rod model is conducted on the basis of the load-deflection relationship of a single rod model. The stability of an equilibrium solution was determined by the eigenvalues of the assoicated linearized system. The results were verified using numerical integration. Finally, we compared the stability characteristics of the Aldo model with those of Barber’s. Our results indicate that mechanical properties of the rods significantly influence the stability of the Aldo model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:57:27Z (GMT). No. of bitstreams: 1 ntu-102-R00522501-1.pdf: 2637020 bytes, checksum: dde0b592b2e39f237039b3a60fe60b72 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝…………. ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii Chapter 1 導論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究方法 5 Chapter 2 單柱體模型 6 2.1 連續單柱體模型 6 2.1.1 熱阻與熱變形 7 2.1.2 單一柱體受力和變形的關係( ) 9 2.1.3 間隙和變形的關係( ) 14 2.2 離散單柱體模型 19 2.2.1 統御方程式與平衡解 20 2.2.2 單一柱體的穩定性分析-內阻尼系統 22 2.2.3 單一柱體的穩定性分析-外阻尼性統 26 2.2.4 數值結果 30 Chapter 3 雙柱體模型 38 3.1 連續雙柱體模型 38 3.1.1 Barber的平衡解 38 3.1.2 Barber的穩定性分析 43 3.2 離散雙柱體模型 48 3.2.1 統御方程式 49 3.2.2 平衡解 52 3.2.3 離散Aldo模型的穩定性分析-內阻尼系統 54 3.2.4 離散Aldo模型的穩定性分析-外阻尼系統 58 3.3 離散模型的數值結果 60 3.3.1 平衡解分歧圖 60 3.3.2 分岐圖穩定性的數值驗證 68 Chapter 4 結論 87 REFERENCE 89 | |
| dc.language.iso | zh-TW | |
| dc.subject | 接觸熱阻 | zh_TW |
| dc.subject | Aldo模型 | zh_TW |
| dc.subject | 熱彈不穩定性 | zh_TW |
| dc.subject | thermo-elastic instability | en |
| dc.subject | contact thermal resistance | en |
| dc.subject | Aldo model | en |
| dc.title | 離散Aldo模型在Barber條件下的熱彈穩定性 | zh_TW |
| dc.title | Thermoelastic Stability of Discrete Aldo Model with Barber's Condition | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 伍次寅(Tzu-yin Wu),蘇春?(Chun-Hsi Su) | |
| dc.subject.keyword | 熱彈不穩定性,接觸熱阻,Aldo模型, | zh_TW |
| dc.subject.keyword | thermo-elastic instability,contact thermal resistance,Aldo model, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
