Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61266
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡詩偉(Shih-Wei Tsai)
dc.contributor.authorHsiao-Ting Linen
dc.contributor.author林筱婷zh_TW
dc.date.accessioned2021-06-16T10:57:00Z-
dc.date.available2018-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-08
dc.identifier.citation1. Richardson, B.J., Lam, P.K., and Martin, M., Emerging chemicals of concern: pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China. Mar Pollut Bull, 2005. 50(9): p. 913-20.
2. Aquatic life criteria for contaminants of emerging concern: general challenges and recommendations. U.S. Environmental Protection Agency, 2008.
3. Risk Assessment Report 1-(5,6,7,8-TETRAHYDRO-3,5,5,6,8,8-HEXAMETHYL-2-NAPTHYL)ETHAN-1-ONE(AHTN). European Union, 2008.
4. Risk Assessment Report 1,3,4,6,7,8-HEXAHYDRO-4,6,6,7,8,8-HEXAMETHYLCYCLOPENTA-γ-2-BENZOPYRAN(1,3,4,6,7,8-HEXAHYDRO-4,6,6,7,8,8-HEXAMETHYLIN-DENO[5,6-C]PYRAN - HHCB). European Union, 2008.
5. Heberer, T., Gramer, S., and Stan, H.J., Occurrence and Distribution of Organic Contaminants in the Aquatic System in Berlin. Part III: Determination of Synthetic Musks in Berlin Surface Water Applying Solid-phase Microextraction (SPME) and Gas Chromatography-Mass Spectrometry (GC-MS). Acta hydrochimica et hydrobiologica, 1999. 27(3): p. 150-156.
6. Heidler, J., and Halden, R.U., Mass balance assessment of triclosan removal during conventional sewage treatment. Chemosphere, 2007. 66(2): p. 362-369.
7. Schmeiser, H.H., Gminski, R., and Mersch Sundermann, V., Evaluation of health risks caused by musk ketone. International Journal of Hygiene and Environmental Health, 2001. 203(4): p. 293-299.
8. Reregistration Eligibility Decision for Triclosan. U.S. Environmental Protection Agency, 2008.
9. Stickney, J.A., Sager, S.L., Clarkson, J.R., Smith, L.A., Locey, B.J., Bock, M.J., Hartung, R., and Olp, S.F., An updated evaluation of the carcinogenic potential of 1,4-dioxane. Regulatory Toxicology and Pharmacology, 2003. 38(2): p. 183-195.
10. Lee, I.S., Lee, S.H., and Oh, J.E., Occurrence and fate of synthetic musk compounds in water environment. Water Research, 2010. 44(1): p. 214-222.
11. Adolfsson Erici, M., Pettersson, M., Parkkonen, J., and Sturve, J., Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere, 2002. 46(9–10): p. 1485-1489.
12. Tsai, S.W., Shih, M.W., and Pan, Y.P., Determinations and residual characteristics of triclosan in household food detergents of Taiwan. Chemosphere, 2008. 72(9): p. 1250-1255.
13. Bedoux, G., Roig, B., Thomas, O., Dupont, V., and Le Bot, B., Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ Sci Pollut Res Int, 2012. 19(4): p. 1044-65.
14. Ernstgard, L., Iregren, A., Sjogren, B., and Johanson, G., Acute effects of exposure to vapours of dioxane in humans. Hum Exp Toxicol, 2006. 25(12): p. 723-9.
15. Tanabe, A., and Kawata, K., Determination of 1,4-dioxane in household detergents and cleaners. J AOAC Int, 2008. 91(2): p. 439-44.
16. Wang, Y.C., and Ding, W.H., Determination of synthetic polycyclic musks in water by microwave-assisted headspace solid-phase microextraction and gas chromatography-mass spectrometry. Journal of Chromatography A, 2009. 1216(40): p. 6858-6863.
17. Winkler, M., Headley, J.V., and Peru, K.M., Optimization of solid-phase microextraction for the gas chromatographic-mass spectrometric determination of synthetic musk fragrances in water samples. J Chromatogr A, 2000. 903(1-2): p. 203-10.
18. Hazardous Substances Data Bank (HSDB). United States National Library of Medicine.
19. Lee, H.B., Peart, T.E., and Sarafin, K., Occurrence of polycyclic and nitro musk compounds in Canadian sludge and wastewater samples. Vol. 38. 2003, Burlington, ON, CANADA: National Water Research Institute. 20.
20. McAvoy, D.C., Schatowitz, B., Jacob, M., Hauk, A., and Eckhoff, W.S., Measurement of triclosan in wastewater treatment systems. Environmental Toxicology and Chemistry, 2002. 21(7): p. 1323-1329.
21. Toxicological Profile For 1,4-dioxane. The Agency for Toxic Substances and Disease Registry, 2012.
22. Abe, A., Distribution of 1,4-dioxane in relation to possible sources in the water environment. Science of The Total Environment, 1999. 227(1): p. 41-47.
23. Zenker, M.J., Borden, R.C., and Barlaz, M.A., Occurrence and treatment of 1,4-dioxane in aqueous environments. Environmental Engineering Science, 2003. 20(5): p. 423-432.
24. 1,4-Dioxane Priority Existing Chemical No. 7. National Industrial Chemicals Notification and Assessment Scheme, 1998.
25. Chen, D., Zeng, X., Sheng, Y., Bi, X., Gui, H., Sheng, G., and Fu, J., The concentrations and distribution of polycyclic musks in a typical cosmetic plant. Chemosphere, 2007. 66(2): p. 252-8.
26. Heberer, T., Occurrence, Fate, and Assessment of Polycyclic Musk Residues in the Aquatic Environment of Urban Areas — A Review. Acta hydrochimica et hydrobiologica, 2002. 30(5-6): p. 227-243.
27. Wu, S.F., and Ding, W.H., Fast determination of synthetic polycyclic musks in sewage sludge and sediments by microwave-assisted headspace solid-phase microextraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 2010. 1217(17): p. 2776-2781.
28. Antoniou, C.V., Koukouraki, E.E., and Diamadopoulos, E., Analysis of Selected Pharmaceutical Compounds and Endocrine Disruptors in Municipal Wastewater Using Solid-Phase Microextraction and Gas Chromatography. Water Environment Research, 2009. 81(7): p. 664-669.
29. Canesi, L., Ciacci, C., Lorusso, L.C., Betti, M., Gallo, G., Pojana, G., and Marcomini, A., Effects of Triclosan on Mytilus galloprovincialis hemocyte function and digestive gland enzyme activities: Possible modes of action on non target organisms. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2007. 145(3): p. 464-472.
30. Sweeney, L.M., Thrall, K.D., Poet, T.S., Corley, R.A., Weber, T.J., Locey, B.J., Clarkson, J., Sager, S., and Gargas, M.L., Physiologically based pharmacokinetic modeling of 1,4-Dioxane in rats, mice, and humans. Toxicol Sci, 2008. 101(1): p. 32-50.
31. 1,4-dioxane. International Agency for Research on Cancer, 1987.
32. Reiner, J.L., and Kannan, K., A survey of polycyclic musks in selected household commodities from the United States. Chemosphere, 2006. 62(6): p. 867-873.
33. TSCA Workplan Chemical Risk Assessment HHCB- 1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-γ-2-benzopyran. U.S. Environmental Protection Agency, 2012.
34. 2006 Edition (14) of the Drinking Water Standards and Health Advisories. U.S. Environmental Protection Agency, 2006.
35. Emerging Contaminant Spotlight: 1,4-Dioxane. 2007.
36. Guidelines for Drinking Water Quality Incorporating First Addendum. World Health Organization, 2006.
37. Fuh, C.B., Lai, M., Tsai, H.Y., and Chang, C.M., Impurity analysis of 1,4-dioxane in nonionic surfactants and cosmetics using headspace solid-phase microextraction coupled with gas chromatography and gas chromatography–mass spectrometry. Journal of Chromatography A, 2005. 1071(1–2): p. 141-145.
38. 化粧品中含1,4-二氧六圜(1,4-Dioxane)之殘留限量規定. Taiwan Food and Drug Administration, 2005.
39. Toxic Chemical Substances Control Act. Taiwan Environmental Protection Agency, 2007.
40. Garcı́a Jares, C., Llompart, M.a., Polo, M.a., Salgado, C., Macı́as, S., and Cela, R., Optimisation of a solid-phase microextraction method for synthetic musk compounds in water. Journal of Chromatography A, 2002. 963(1–2): p. 277-285.
41. Roosens, L., Covaci, A., and Neels, H., Concentrations of synthetic musk compounds in personal care and sanitation products and human exposure profiles through dermal application. Chemosphere, 2007. 69(10): p. 1540-1547.
42. Prosen, H., and Zupančič Kralj, L., Solid-phase microextraction. TrAC Trends in Analytical Chemistry, 1999. 18(4): p. 272-282.
43. Arthur, C.L., and Pawliszyn, J., Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry, 1990. 62(19): p. 2145-2148.
44. Alpendurada, M.F., Solid-phase microextraction: a promising technique for sample preparation in environmental analysis. J Chromatogr A, 2000. 889(1-2): p. 3-14.
45. Patnaik, P., Handbook of Environmental Analysis: Chemical Pollutants in Air, Water, Soil, and Solid Wastes. 2011.
46. Childress, C.J.O., Foreman, W.T., Connor, B.F., and Maloney, T.J., New Reporting Procedures Based on Long-Term Method Detection Levels and Some Considerations for Interpretations of Water-Quality Data Provided by the U.S. Geological Survey National Water Quality Laboratory. 1999.
47. Lin, W.T., Determations of 1,1,1-Trichloroethane, 1,4-Dioxane, and Phthalates in Water Simultaneously by Solid-Phase Microextraction. Graduate Institute of Environmental Health College of Public Health, National Taiwan University Master Thesis, 2013.
48. Martinez, M., and Penuela, G.A., Analysis of triclosan and 4n-nonylphenol in Colombian reservoir water by gas chromatography-mass spectrometry. Water and Environment Journal, 2012: p. n/a-n/a.
49. Nakamura, S., and Daishima, S., Simultaneous determination of 22 volatile organic compounds, methyl-tert-butyl ether, 1,4-dioxane, 2-methylisobomeol and geosmin in water by headspace solid phase microextraction-gas chromatography-mass spectrometry. Vol. 548. 2005, Amsterdam, PAYS-BAS: Elsevier. 7.
50. Park, Y.M., Pyo, H., Park, S.J., and Park, S.K., Development of the analytical method for 1,4-dioxane in water by liquid-liquid extraction. Vol. 548. 2005, Amsterdam, PAYS-BAS: Elsevier. 7.
51. Posada Ureta, O., Olivares, M., Navarro, P., Vallejo, A., Zuloaga, O., and Etxebarria, N., Membrane assisted solvent extraction coupled to large volume injection-gas chromatography-mass spectrometry for trace analysis of synthetic musks in environmental water samples. J Chromatogr A, 2012. 1227: p. 38-47.
52. Fiss, E.M., Rule, K.L., and Vikesland, P.J., Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing antibacterial products. Environ Sci Technol, 2007. 41(7): p. 2387-94.
53. Machado, S., Goncalves, C., Cunha, E., Guimaraes, A., and Alpendurada, M.F., New developments in the analysis of fragrances and earthy–musty compounds in water by solid-phase microextraction (metal alloy fibre) coupled with gas chromatography–(tandem) mass spectrometry. Talanta, 2011. 84(4): p. 1133-1140.
54. Su, B.D., Min, C.Z., and Hui, C.D., The Determination of Galaxolide in Water Samples with SPME Coupled with GC-MS. Advanced Materials Research, 2011. 183-185: p. 184-187.
55. Bester, K., Polycyclic musks in the Ruhr catchment area--transport, discharges of waste water, and transformations of HHCB, AHTN and HHCB-lactone. J Environ Monit, 2005. 7(1): p. 43-51.
56. Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., and Kroiss, H., Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Research, 2005. 39(19): p. 4797-4807.
57. Bester, K., Retention characteristics and balance assessment for two polycyclic musk fragrances (HHCB and AHTN) in a typical German sewage treatment plant. Chemosphere, 2004. 57(8): p. 863-870.
58. Mitjans, D., and Ventura, F., Determination of musks and other fragrance compounds at ng/L levels using CLSA (closed loop stripping analysis) and GC/MS detection. Water Sci Technol, 2004. 50(5): p. 119-23.
59. Lishman, L., Smyth, S.A., Sarafin, K., Kleywegt, S., Toito, J., Peart, T., Lee, B., Servos, M., Beland, M., and Seto, P., Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Science of The Total Environment, 2006. 367(2–3): p. 544-558.
60. Zhang, X., Yao, Y., Zeng, X., Qian, G., Guo, Y., Wu, M., Sheng, G., and Fu, J., Synthetic musks in the aquatic environment and personal care products in Shanghai, China. Chemosphere, 2008. 72(10): p. 1553-1558.
61. Yamagishi, T., Miyazaki, T., Horii, S., and Akiyama, K., Synthetic musk residues in biota and water from Tama River and Tokyo Bay (Japan). Arch Environ Contam Toxicol, 1983. 12(1): p. 83-9.
62. Muller, S., Schmid, P., and Schlatter, C., Occurrence of nitro and non-nitro benzenoid musk compounds in human adipose tissue. Chemosphere, 1996. 33(1): p. 17-28.
63. Gatermann, R., Huhnerfuss, H., Rimkus, G., Wolf, M., and Franke, S., The distribution of nitrobenzene and other nitroaromatic compounds in the North Sea. Marine Pollution Bulletin, 1995. 30(3): p. 221-227.
64. Lv, Y., Yuan, T., Hu, J., and Wang, W., Simultaneous determination of trace polycyclic and nitro musks in water samples using optimized solid-phase extraction by gas chromatography and mass spectrometry. Anal Sci, 2009. 25(9): p. 1125-30.
65. Kawata, K., Ibaraki, T., Tanabe, A., and Yasuhara, A., Distribution of 1,4-dioxane and N, N-dimethylformamide in river water from Niigata, Japan. Bull Environ Contam Toxicol, 2003. 70(5): p. 876-82.
66. Draper, W.M., Dhoot, J.S., Remoy, J.W., and Perera, S.K., Trace-level determination of 1,4-dioxane in water by isotopic dilution GC and GC-MS. Analyst, 2000. 125(8): p. 1403-8.
67. Kraybill, H.F., Carcinogenesis induced by trace contaminants in potable water. Bull N Y Acad Med, 1978. 54(4): p. 413-27.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61266-
dc.description.abstract日常生活中廣泛使用之消費性產品(consumer products)及個人保健用品(personal care products)中,常可發現人造麝香(synthetic musks),三氯沙(Triclosan)及二氧陸圜(1,4-dioxane)。人造麝香常被作為香料使用,藉以產生香味,其可分為兩類: 硝基麝香(nitro musks)及多環類麝香(polycyclic musks);至於使用量,則以硝基麝香中之酮麝香(Musk ketone)、二甲苯麝香(Musk xylene)、以及多環類麝香中之佳樂麝香(Galaxolide)及吐納麝香(Tonalide)為最大宗。另外,三氯沙則具有抗菌作用而廣泛存在於個人保健用品中;至於二氧陸圜被大量使用在工業上,其為合成非離子型界面活性劑時所產生之副產物,因此化妝品及清潔劑等含非離子型界面活性劑之產品中常可檢測到二氧陸圜。
人造麝香、三氯沙及二氧陸圜等物質可能因為使用,透過沖洗及清潔等行為排放到水體環境中,因而造成近年來水中新興污染物質的問題。為了了解臺灣水體環境中這些有害物質的濃度分佈並進一步評估可能的共同暴露與健康風險,本研究利用固相微萃取 (Solid-Phase Microextraction, SPME) 技術,建立同時檢測水中不同特性之人造麝香,三氯沙及二氧陸圜的分析方法。
本研究將SPME纖維以直接接觸水樣的方式,同時對於含有佳樂麝香、吐納麝香、酮麝香、二甲苯麝香、三氯沙及二氧陸圜等已知六種物質濃度的水樣中進行萃取,並針對不同條件進行測試,包含:纖維種類、萃取溫度、萃取時間、轉速、鹽析濃度及脫附效率等,以選擇最適合之萃取條件。萃取完成後,將纖維置於氣相層析串聯質譜儀(Gas chromatography tandem-mass spectrometry)之注射口予以熱脫附,接著進行後續的定性及定量分析。
研究結果發現,最適合採集此六種物質之纖維為65 μm PDMS-DVB,而在選取最適萃取條件後所建立之檢量線的線性範圍,佳樂麝香和吐納麝香為0.05-1 μg L-1,酮麝香、二甲苯麝香、三氯沙及二氧陸圜為0.5-10 μg L-1,相關係數(correlation coefficients)都大於0.99,具有良好線性。六種物質的方法偵測極限(method detection limits, MDLs)範圍為0.02-0.28 μg L-1,然而此六種物質之物理化學特性不同,因此二氧陸圜無法和人造麝香及三氯沙同時分析。本研究進行分析方法之開發,以此固相微萃取技術,針對臺灣7座淨水廠,共18個水樣,同時檢測水中四種人造麝香、三氯沙及二氧陸圜等新興污染物質,結果顯示酮麝香、二甲苯麝香、三氯沙及二氧陸圜皆未檢測出;除了其中兩個水樣之濃度小於定量下限(limit of quantification, LOQ)外,其餘水樣中皆未檢測出吐納麝香;而佳樂麝香的部份,有一個水樣未檢測出濃度,其餘水樣濃度則皆小於定量下限。本研究建立之分析方法能提供一個快速、簡單又環保的環境檢測方法,分析這些水中危害物質。
zh_TW
dc.description.abstractEmerging environmental pollutants have caused concerned in recent years. For example, a variety of chemical components such as triclosan, synthetic musks (e.g., galaxolide (HHCB), tonalide (AHTN), musk ketone (MK), and musk xyxlene (MX)), triclosan, and 1,4-dioxane, have been detected in different places. Among the chemicals mentioned above, HHCB, AHTN, MX, and MK are used as fragrance ingredients in personal care products. Triclosan are widely used as antimicrobial compounds and perservatives in shampoo, soaps and so on. As for 1,4-dioxane, it could be produced as a by-product during the formation of nonionic surfactants. Human may expose to these chemicals concurrently. Moreover, these chemicals may be discharged into the water environment after usage. To assess the possible health effects, a solid-phase micriextraction (SPME) method for the analysis of HHCB, AHTN, MX, MK, triclosan and 1,4-dioxane in water simultaneously was developed in this research.
HHCB, AHTN, MX, MK, triclosan, and 1,4-dioxane were prepared in mixtures as standard solutions. The samples were first equilibrated for 5 minutes before the SPME procedure. Hence, the extraction was performed at 40℃ for 50 minutes with 300 rpm. The 65μm PDMS/DVB fiber was immersed into the water samples. After adsorption equilibrium has been reached, the SPME fiber was inserted into the injector of the gas chromatography with tandem-mass spectrometry and desorbed at 250℃for 2 min for thermal desorption and further analysis.
The results show that no carry-over effect was observed from the thermal desorption of the sample. The linear ranges of HHCB and AHTN were from 0.05 to 1 μg L-1. For MX, MK, triclosan, and 1,4-dioxan, the linear ranges were from 0.5 to 10 μg L-1. In addition, the method detection limits were 0.02 to 0.28 μg L-1. The RSD of most compounds were < 10 % and correlation coefficients were all > 0.99. Good linearity and precision were present. However, the physical and chemical properties of each target compound are not similar. Therefore, it could not analyze 1,4-dioxane with synthetic musks and triclosan in water concurrently.
For the determinations of synthetic musks, triclosan and 1,4-dioxane in water, the SPME procedure was applied in this study. The advantages over conventional methods, such as solvent-free and time-saving, were reached. Besides, the sensitivities of the method for different compounds were low enough to determine the concentrations from environmental water samples.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:57:00Z (GMT). No. of bitstreams: 1
ntu-102-R00844003-1.pdf: 1508384 bytes, checksum: 0bfa7ea1b02ab907f3df0ecfc7952a2d (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要 II
Abstract IV
TABLE OF CONTENTS VI
LIST OF FIGURES VIII
LIST OF TABLES IX
Chapter 1 Introduction 1
1.1. Properties 2
1.2. Use and production 3
1.3. Environmental fate 4
1.4. Exposure routes 7
1.5. Health effects 7
1.6. Guidelines 9
Chapter 2 Research Objective and Structure 11
2.1. Research objective 11
2.2. Research structure 12
Chapter 3 Materials and Methods 13
3.1. Reagents and standards 13
3.2. SPME technique 14
3.3. Experimental set-up 15
3.4. Instrumental analysis 16
3.5. Linear range, precision, and recovery 17
3.6. Method detection limit (MDL) 18
Chapter 4 Results and Discussion 19
4.1. GC-MS analysis 19
4.1.1. Analysis of synthetic musks and triclosan 19
4.1.2. Analysis of 1,4-dioxane 19
4.2. Optimization of analytical parameters for synthetic musks and triclosan 20
4.2.1. Column selection 21
4.2.2. Types of fibers 21
4.2.3. Extraction time 22
4.2.4. Extraction temperature 23
4.2.5. Agitation 23
4.2.6. Salt addition 23
4.2.7. Desorption efficiency 24
4.3. Optimization of analytical parameters for 1,4-dioxane 25
4.4. Competition between 1,4-dioxane and other target compounds 25
4.5. Calibration curve 26
4.6. Method detection limit 27
4.7. Method validations 28
4.8. Limitations 29
4.9. Application of the analysis on real water samples 31
Conclusion 32
References 34
dc.language.isoen
dc.title以固相微萃取技術同時檢測水中之人造麝香、三氯沙及二氧陸圜zh_TW
dc.titleDeterminations of Synthetic Musks, Triclosan, and 1,4-Dioxane in Water Simultaneously by Solid-Phase Microextractionen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林嘉明(Jia-Ming Lin),陳美蓮(Mei-Lien Chen)
dc.subject.keyword人造麝香,三氯沙,二氧陸圜,固相微萃取,水樣分析,zh_TW
dc.subject.keywordSynthetic musks,Triclosan,1,4-dioxane,Solid-phase microextraction,Water analysis,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2013-08-08
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
1.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved