Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61261
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周承復
dc.contributor.authorCheng-Lung Pengen
dc.contributor.author彭正龍zh_TW
dc.date.accessioned2021-06-16T10:56:40Z-
dc.date.available2013-08-20
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-08
dc.identifier.citation[1] Apache Hadoop. http://hadoop.apache.org/.
[2] Hadoop Wiki: PoweredBy. http://wiki.apache.org/hadoop/PoweredBy.
[3] IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.
[4] Latency Is Everywhere and It Costs You Sales—How to Crush It. http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it.
[5] Hussam Abu-Libdeh, Paolo Costa, Antony Rowstron, Greg O’Shea, and Austin Donnelly. Symbiotic routing in future data centers. ACM SIGCOMM Computer Communication Review, 40(4):51–62, 2010.
[6] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data center tcp (dctcp). ACM SIGCOMM Computer Communication Review, 40(4):63–74, 2010.
[7] Kai Chen, Chengchen Hu, Xin Zhang, Kai Zheng, Yan Chen, and Athanasios V Vasilakos. Survey on routing in data centers: insights and future directions. Network, IEEE, 25(4):6–10, 2011.
[8] Kai Chen and Klara Nahrstedt. Effective location-guided tree construction algorithms for small group multicast in manet. In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, volume 3, pages 1180–1189. IEEE, 2002.
[9] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy Katz. The case for evaluating mapreduce performance using workload suites. In Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), 2011 IEEE 19th International Symposium on, pages 390–399. IEEE, 2011.
[10] Paolo Costa, Austin Donnelly, Antony Rowstron, and Greg O’Shea. Camdoop: Exploiting in-network aggregation for big data applications. In USENIX NSDI, volume 12, 2012.
[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. In OSDI 2004, pages 137–150, 2004.
[12] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Communications of the ACM, 51(1):107–113, 2008.
[13] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Helios: a hybrid electrical/optical switch architecture for modular data centers. ACM SIGCOMM Computer Communication Review, 41(4):339–350, 2011.
[14] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.
[15] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula, Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta Sengupta. Vl2: a scalable and flexible data center network. In ACM SIGCOMM Computer Communication Review, volume 39, pages 51–62. ACM, 2009.
[16] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. BCube: A High Performance, Servercentric Network Architecture for Modular Data Centers. In SIGCOMM’09: Proceedings of the ACM SIGCOMM 2009 conference on Data communication, pages 63–74. ACM, 2009.
[17] Frank K Hwang, Dana S Richards, and Pawel Winter. The Steiner tree problem. Elsevier, 1992.
[18] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: distributed data-parallel programs from sequential building blocks. ACM SIGOPS Operating Systems Review, 41(3):59–72, 2007.
[19] Dimitrios Koutsonikolas, Saumitra M Das, Y Charlie Hu, and Ivan Stojmenovic. Hierarchical geographic multicast routing for wireless sensor networks. Wireless networks, 16(2):449–466, 2010.
[20] Dan Li, Jiangwei Yu, Junbiao Yu, and JianpingWu. Exploring efficient and scalable multicast routing in future data center networks. In INFOCOM, 2011 Proceedings IEEE, pages 1368–1376. IEEE, 2011.
[21] Martin Mauve, Holger F‥usler, J‥org Widmer, and Thomas Lang. Poster: positionbased multicast routing for mobile ad-hoc networks. In Proceedings of Fourth ACM International Symposium on Mobile Ad Hoc Networking and Computing: MobiHoc.
Citeseer, 2003.
[22] Akira Mizumoto, Hirozumi Yamaguchi, and Kenichi Taniguchi. Cost-conscious geographic multicast on manet. In Sensor and Ad Hoc Communications and Net-works, 2004. IEEE SECON 2004. 2004 First Annual IEEE Communications Society Conference on, pages 44–53. IEEE, 2004.
[23] C. Monash. Cloudera presents the MapReduce bull case.
DBMS2 Blog. http://www.dbms2.com/2009/04/15/cloudera-resents-the-mapreduce-bull-case/.
[24] C. Monash. Facebook, Hadoop, and Hive. DBMS2 Blog. http://www.dbms2.com/2009/05/11/facebook-hadoop-and-hive/.
[25] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat. Portland: a scalable fault-tolerant layer 2 data center network fabric. In ACM SIGCOMM Computer Communication Review, volume 39, pages 39–50. ACM, 2009.
[26] The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/.
[27] Akihito Okura, Takeshi Ihara, and Akira Miura. Bam: branch aggregation multicast for wireless sensor networks. In Mobile Adhoc and Sensor Systems Conference, 2005. IEEE International Conference on, pages 10–pp. IEEE, 2005.
[28] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking: bringing order to the web. 1999.
[29] Pedro M Ruiz and Antonio F Gomez-Skarmeta. Approximating optimal multicast trees in wireless multihop networks. In Computers and Communications, 2005. ISCC 2005. Proceedings. 10th IEEE Symposium on, pages 686–691. IEEE, 2005.
[30] Juan A Sanchez, Pedro M Ruiz, and I Stojmnenovic. Gmr: Geographic multicast routing for wireless sensor networks. In Sensor and Ad Hoc Communications and Networks, 2006. SECON’06. 2006 3rd Annual IEEE Communications Society on, volume 1, pages 20–29. IEEE, 2006.
[31] Guohui Wang, David G Andersen, Michael Kaminsky, Konstantina Papagiannaki, TS Ng, Michael Kozuch, and Michael Ryan. c-through: Part-time optics in data centers. In ACM SIGCOMM Computer Communication Review, volume 40, pages 327–338. ACM, 2010.
[32] ChristoWilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. Better never than late: Meeting deadlines in datacenter networks. In ACM SIGCOMM Computer Communication Review, volume 41, pages 50–61. ACM, 2011.
[33] HaitaoWu, Guohan Lu, Dan Li, Chuanxiong Guo, and Yongguang Zhang. Mdcube: a high performance network structure for modular data center interconnection. In Proceedings of the 5th international conference on Emerging networking experiments and technologies, pages 25–36. ACM, 2009.
[34] Shibo Wu and K Selcuk Candan. Gmp: Distributed geographic multicast routing in wireless sensor networks. In Distributed Computing Systems, 2006. ICDCS 2006. 26th IEEE International Conference on, pages 49–49. IEEE, 2006.
[35] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, U′ lfar Erlingsson, Pradeep Kumar Gunda, and Jon Currey. Dryadlinq: A system for general-purpose distributed data-parallel computing using a high-level language. In Proceedings of the 8th USENIX conference on Operating systems design and implementation, pages 1–14, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61261-
dc.description.abstract在資料中心網路中減少網路流量是一個熱門的議題,對於即時性應用而言,資料聚合是一個經常被使用的方式。資料可以在洗牌階段被聚合, 而且輸出的資料大小可以被減小為輸入的一部分資料大小。儘管如此,現今資料中心的研究並沒有考慮到在時間限制下的資料聚合。在本篇論文中我們運用資料聚合的方法,不只是減少網路流量,同時也減少資料流的延遲使得這些資料流能夠盡量地滿足期限前被收到的需求。我們也利用在以伺服器為主的資料中心的特性並選擇適合的路徑去使得伺服器跟伺服器之間的延遲能夠更低。根據實驗的結果我們發現,這樣以伺服器為主的資料中心聚合樹演算法相較於之前的研究,可以同時提供較低的網路流量並同時維持較低延遲的服務品質。zh_TW
dc.description.abstractBandwidth consumption minimization is a popular issue for data center networks. For real-time applications, data aggregation is commonly used. Data can be aggregated in a shuffle phase, and the output size can be reduced as a fraction of the input size. Nevertheless, existing works on data aggregation do not consider deadline constraints in datacenters. In this paper, we utilize data aggregation to reduce not only bandwidth consumption but also the latency of dataflows so that the deadlines of dataflows can be satifsified. We also exploit the property in server-centric datacenters (SDC) and choose suitable paths to achieve low end-to-end delay. According to the simulation result, the SDC aggregation-tree algorithm can provide both lower bandwidth consumption and lower delay than previous approaches.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:56:40Z (GMT). No. of bitstreams: 1
ntu-102-R00922067-1.pdf: 3530264 bytes, checksum: 5da40c0d01a2435004c47dbbc0cd4886 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
1 Introduction 1
2 Background and Related Work 5
2.1 Data Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Data Center Network Architecture . . . . . . . . . . . . . . . . . . . . . 8
2.3 Application Deadline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Multicast Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Formulation 16
3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Formulation of the Optimization Problem . . . . . . . . . . . . . . . . . 19
4 Aggregation-tree Algorithm for Server-centric Datacenters 25
4.1 Design strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Two-step Heuristic algorithm . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5 Performance Evaluation 35
5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Compared Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6 Conclusion 46
Bibliography 47
dc.language.isoen
dc.subject資料中心網路zh_TW
dc.subject資料聚合zh_TW
dc.subject延遲敏感性zh_TW
dc.subject群播路由zh_TW
dc.subjectData aggregationen
dc.subjectData center networken
dc.subjectDelay-sensitiveen
dc.subjectMulticast routingen
dc.title以伺服器為主之資料中心具延遲敏感性的網路內資料聚合zh_TW
dc.titleDelay-sensitive In-network Data Aggregation for Server-centric Datacentersen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡子傑,廖婉君,逄愛君,吳曉光
dc.subject.keyword資料聚合,資料中心網路,延遲敏感性,群播路由,zh_TW
dc.subject.keywordData aggregation,Data center network,Delay-sensitive,Multicast routing,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2013-08-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved