請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61259
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李清勝 | |
dc.contributor.author | Yung-Lan Lin | en |
dc.contributor.author | 林雍嵐 | zh_TW |
dc.date.accessioned | 2021-06-16T10:56:32Z | - |
dc.date.available | 2013-08-14 | |
dc.date.copyright | 2013-08-14 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-08 | |
dc.identifier.citation | 張龍耀,2013:伴隨信風增強之熱帶氣旋形成過程。國立台灣大學大氣科學研究所博士論文,141頁。
Anthes, R. A., 1974: Data assimilation and initialization of hurricane prediction models. J. Atmos. Sci., 31, 702-719. Bessho, K., T. Nakazawa, S. Nishimura, and K. Kato, 2010: Warm Core Structures in Organized Cloud Clusters Developing or Not Developing into Tropical Storms Observed by the Advanced Microwave Sounding Unit. Mon. Wea. Rev., 138, 2624-2643. Bister, M., 2001: Effect of peripheral convection on tropical cyclone formation. J. Atmos. Sci., 58, 3463–3476. Briegel, L. M., and W. M. Frank, 1997: Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 1397–1413. Betts, A. K. and M. J. Miller, 1986: A new convective adjustment scheme, Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693-709. Betts, A. K., 1986: A new convective adjustment scheme. Part I:Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677-692. Chambers, C. R. S. and Tim Li, 2007: Simulation of formation of a near-equatorial typhoon Vamei (2001). Meteor. Atmos. Phys., 98, 67-80. Chang, C. P., V. F. Morris, and J. M. Wallace, 1970: A statistical study of easterly waves in the western Pacific: July–December 1964. J. Atmos. Sci., 27, 195–201. ------, J. E. Erickson and K. M. Lau, 1979: Northeasterly cold surges and near-equatorical disturbances over the winter MONEX area during December 1974. Part I: Synoptic aspects. Mon. Wea. Rev., 107, 812-829. ------, and K. M. Lau, 1980: Northeasterly cold surges and nearequatorial disturbances over the winter MONEX area during December 1974. Part II: Planetary-scale aspects, Mon. Wea. Rev., 107, 812–829. ------, C.-H. Liu, and H.-C. Kuo, 2003: Typhoon Vamei: An equatorial tropical cyclone formation. Geophys. Res. Lett., 30, 1151-1154. ------, P. A. Harr, and H.-J. Chen, 2005: Synoptic disturbances over the equatorial South China Sea and western maritime continent during boreal winter. Mon. Wea. Rev., 133, 489–503. Chang, L.-Y., Kevin K. W. Cheung, and C.-S. Lee, 2010: The role of trade wind surges for tropical cyclone formations in the western North Pacific. Mon. Wea. Rev., 138, 4120-4134. Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21,. 68-75. Charney, J., M. Halem, and R. Jastrow, 1969: Use of incomplete historical data to infer the present state of the atmosphere. J. Atmos. Sci., 26, 1160-1163. Cheang, B. K., 1977: Synoptic features and structures of some equatorial vortices over the South China Sea in the Malaysian region during the winter monsoon, December 1973. Pure Appl. Geophys., 115, 1303–1333. Chen, G. T. J., T. E. Gerish, and C.-P. Chang, 1986: Structure variations of the synoptic-scale cyclonic disturbances near Borneo during the WMONEX period. Pap. Meteor. Res., 9, 117–135. Chen, S.-H., and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99–118. Cheang, B. K., 1977: Synoptic features and structures of some equatorial vortices over the South China Sea in the Malaysian region during the winter monsoon of December 1973. Pure Appl. Geophys., 115, 1303–1333. Cheung, K. K. W., 2004: Large-scale environmental parameters associated with tropical cyclone formations in the western North Pacific. J. Climate, 17, 466-484. Ching, L., C.-H. Sui, and M.-J. Yang, 2010: An analysis of multi-scale nature of Tropical cyclone activities in June 2004: Climate Background. J. Geophys. Res., 115, D24108, doi: 10.1029/2010JD013803. Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 5587–5646. Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585−604. Fabry, F. and J. Sun, 2010: For how long should what data be assimilated for the mesoscale forecasting of convection and why? Part I: On the propagation of initial condition errors and their implications for data assimilation. Mon. Wea. Rev., 138, 242–255. Frank, W. M. and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 2397-2417. Ferreira, R. N., and W. H. Schubert, 1996: Dynamical aspects of twin tropical cyclones associated with the Madden-Julian oscillation. J. Atmos. Sci., 53, 929–945. Fu, B., M. S. Peng, T. Li, D. E. Stevens, 2012: Developing versus Nondeveloping Disturbances for Tropical Cyclone Formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 1067–1080. Gall, J. S., W. M. Frank and M. C. Wheeler., 2010: The role of equatorial Rossby Waves in tropical cyclogenesis. Part I: Idealized numerical simulations in an initially quiescent background environment. Mon. Wea. Rev., 138, 1368-1382. Gray, W. M.,1968: Global view of the origin of tropical disturbances and storms. Mon Wea Rev., 96, 669-700. ------, 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 37-69. Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos Sci., 43, 1559–1573. Hall, J. D., A. J. Matthews, and D. J. Karoly, 2001: The modulation of tropical cyclone activity in the Australian region by the Madden–Julian oscillation. Mon. Wea. Rev., 129, 2970–2982. Hebert, P. H., and K. O. Poteat, 1975: A satellite classification technique for subtropical cyclones. NOAA Tech. Memo. NWS SR-83, 25pp. Hennon, C. C., and J. S. Hobgood, 2003: Forecasting tropical cyclogenesis over the Atlantic basin using large-scale data. Mon. Wea. Rev., 131, 2927-2940. Hennon, C. C., C. N. Helms, K. R. Knapp, and A. R. Bowen, 2011: An objective algorithm for detecting and tracking tropical cloud clusters: implications for tropical cyclogenesis prediction. J. Atmos. Oceanic Technol., 28, 1007-1018. Hennon, C. C., and Coauthors, 2013: Tropical cloud cluster climatology, variability, and genesis productivity. J. Climate, 26, 3046–3066. Hoke, J. E., and R. A. Anthes, 1976: The initialization of numerical models by a dynamic initialization technique. Mon. Wea. Rev., 104, 1551-1556. Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322-2339. -------, J. Dudhia, and S. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120. Houze, R. A., S. G. Goetis, F. D. Marks, and A. K. West, 1981: Winter monsoon convection in the vicinity of north Borneo. Part I: Structure and time variation of clouds and precipitation. Mon. Wea. Rev., 109, 1595–1614. Janjic, Z. I., 1994: The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945. ------, 2000: Comments on ”Development and evaluation of a convection scheme for use in climate models”, J. Atmos. Sci., 57, p. 3686. Johnson, R. H., David L. Priegnitz, 1981: Winter Monsoon Convection in the Vicinity of North Borneo. Part II: Effects on Large-Scale Fields. Mon. Wea. Rev., 109, 1615–1628. ------, and Donald C. Kriete, 1982: Thermodynamic and Circulation Characteristics, of Winter Monsoon Tropical Mesoscale Convection. Mon. Wea. Rev., 110, 1898–1911. ------, and R. A. Houze Jr., 1987: Precipitating cloud systems of the Asian monsoon. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 298–353. Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/ detraining plume model and its application in convective parameterization, J. Atmos. Sci., 47, 2784–2802. ------, and-----, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The representation of cumulus convection in numerical models, Meteor. Monogr., 24, Amer. Meteor. Soc., 165–170 ------, 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181. Keen, R. A., 1982: The role of cross-equatorial tropical cyclone pairs in the Southern Oscillation. Mon. Wea. Rev., 110, 1405-1416. Kerns, B. W., and S. S. Chen, 2013: Cloud clusters and tropical cyclogenesis: developing and nondeveloping systems and their large-scale environment. Mon. Wea. Rev., 141, 192–210. Kistler, R. E., 1974: A study of data assimilation techniques in an autobarotropic primitive equation channel model. M.S. Thesis, The Pennsylvania State University, 84 pp. Knapp, K. R., and J. P. Kossin, 2007: New global tropical cyclone data set from ISCCP B1 geostationary satellite data. J. Appl. Remote Sens., 1, 013505. Knapp, K. R., S. Ansari, C. L. Bain, M. A. Bourassa, M. J. Dickinson, C. Funk, C. N. Helms, C. C. Hennon, C. D. Holmes, G. J. Huffman, J. P. Kossin, H.-T. Lee, A. Loew, and G. Magnusdottir, 2011: Globally gridded satellite (GridSat) observations for climate studies. Bull. Amer. Meteor. Soc., 92, 893-907. Lau, K. M., C. P. Chang, P. H. Chan, 1983: Short-Term Planetary-Scale Interactions over the Tropics and Midlatitudes. Part II: Winter-MONEX Period. Mon. Wea. Rev., 111, 1372–1388. ------, and ------, 1987: Planetary scale aspects of winter monsoon and teleconnections. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 161–202. Lee, C.-S., 1989a: Observational analysis of tropical cyclogenesis in the Western North Pacific. Part I: structural evolution of cloud clusters. J. Atmos. Sci., 46, 2580–2598. ------, 1989b: Observational analysis of tropical cyclogenesis in the Western North Pacific. Part II: budget analysis. J. Atmos. Sci., 46, 2599–2616. ------, Y.-L. Lin , and K. K. W. Cheung, 2006: Tropical cyclone formations in the South China Sea associated with the mei-yu front. Mon. Wea. Rev., 134, 2670-2687. ------, K K. W. Cheung, J. S. N. Hui, R. L. Elsberry, 2008: Mesoscale features associated with tropical cyclone formations in the western North Pacific. Mon. Wea. Rev., 136, 2006-2022. Liebmann, B., H. H. Hendon, and J. D, Glick, 1994: The relationship between tropical cyclones of the Western Pacific and Indian Oceans and the Madden-Julian oscillation. J. Meteor. Soc. Japan, 72, 401-412. Lim, H., and C. P. Chang, 1981: A theory for midlatitude forcing of tropical motions during winter monsoons. J. Atmos. Sci., 38, 2377–2392. Liu, Y., J. C. L. Chan, J. Mao, and G. Wu, 2002: The role of Bay of Bengal convection in the onset of the 1998 South China Sea summer monsoon. Mon. Wea. Rev., 130, 2731–2744. Love, G., 1985: Cross-equatorial interactions during tropical cyclone genesis. Mon. Wea Rev., 113, 1499-1509. Lu, X., Kevin K. W. Cheung, and Y. Duan, 2012: Numerical study on the formation of typhoon Ketsana (2003). Part I: Roles of the mesoscale convective systems. Mon. Wea. Rev., 140, 100–120. Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708. ------, and ------, 1972: Description of gloal-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 827–836. ------, and ------, 1994: Observations of the 40–50 Day Tropical Oscillation—A Review. Mon. Wea. Rev., 122, 814–837. Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 1451–1460. McBride, J. L. and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing verse developing systems. J. Atmos. Sci., 38, 1132–1151. Montgomery, M. T., L. L. Lussier III, R. W. Moore, and Z. Wang, 2010a: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment—Part 1: The role of the easterly wave critical layer. Atmos. Chem. Phys., 10, 9879–9900. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16663–16682. ------, and R. K. Smith, 2012: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS08) field experiment—Part 2: Observations of the convective environment. Atmos. Chem. Phys., 12, 4001–4009. ------, and Coauthors, 2012: The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) Experiment: Scientific Basis, New Analysis Tools, and Some First Results. Bull. Amer. Meteor. Soc., 93, 153–172. Ooyama, K. V., 1982:Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc.Japan., 60, 369-380. Peng, M., B. Fu, T. Li, and D. Stevens, 2012: Developing versus non-developing disturbances for tropical cyclone formation, Part I: North Atlantic. Mon. Wea. Rev., 140, 1047-1066. Reisner, J. R., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071–1107. Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 2027-2043. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang and J. G. Powers, 2005: A description of the advanced research WRF version 2., NCAR., 100pp. Sadler, J. C., 1976: A role of the tropical upper tropospheric trough in early season typhoon development. Mon. Wea. Rev., 104, 1266-1278. Schwarzkopf, M. D., and S. B. Fels, 1985: Improvements to the algorithm for computing CO2 transmissivities and cooling rates. J. Geophys. Res., 90 (ND6), 541–550. ------, and ------, 1991: The simplified exchange method revisited — An accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res., 96 (D5), 9075–9096. Simpson, J., E. Ritchie, G. J. Holland, J. Halverson and S. Stewart. 1997: Mesoscale Interactions in Tropical Cyclone Genesis. Mon. Wea. Rev., 125, 2643–2661. Stauffer, D. R. and N. L. Seaman, 1990: Use of fourdimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 1250-1277. Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854-1997). J. Climate, 16, 1495-1510. Tao, W.-K., J. Simpson, and M. McCumber 1989: An ice-water saturation adjustment, Mon. Wea. Rev., 117, 231–235. Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2009: A dynamically-based method for forecasting tropical cyclogenesis location in the Atlantic sector using global model products. Geophys. Res. Lett., 36, L03801, doi:10.1029/2008GL035586. Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917-1932. Yamasaki, M., 1983: A further study of the tropical cyclone without parameterizing the effects of cumulus convection. Pap. Meteor. Geophys., 34, 221–260. Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp. Zhu, F.-C. 1983 Organized deep cumulus convection over the South China Sea and its interaction with cold surges. J. Meteor. Soc. of Japan, 61, 839-847. Zuki, Z. M., and A. R. Lupo, 2008: Interannual variability of tropical cyclone activity in the southern South China Sea, J. Geophys. Res., 113, D06106, doi:10.1029/2007JD009218. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61259 | - |
dc.description.abstract | 觀測資料顯示南海地區熱帶氣旋(Tropical Cyclone, TC)逐月形成頻率在11和12月共有16 %,顯著高於同一時期西北太平洋地區者;因此本研究探討南海地區冬季於強東北季風影響下,形成TC之過程。為瞭解此種TC形成過程的重要特徵,本研究同時選取地面天氣圖上具封閉等壓線,但未形成TC的熱帶雲簇,分析其特徵並與形成TC之個案比較。合成分析結果顯示,形成個案具有較顯著的低層風切渦度和高層輻散場等有利TC形成之綜觀環境。值得注意的是,形成與非形成個案最大的差異在於初始擾動上游東北風的變化,在形成個案增強至TC強度(定義為25kt) 前,其上游東北風的風速明顯減弱;此東北風的減弱可減小環境垂直風切並減緩乾冷空氣持續逸入,維持系統附近的對流不穩定度,以利對流的維持發展。統計結果亦顯示,季內震盪MJO (Madden–Julian oscillation)對此類型個案由初始擾動發展為TC之機率高低,似乎未扮演關鍵角色。
透過WRF(Weather Research and Forecasting)數值模式之模擬分析結果顯示,模式可合理模擬TC之形成過程和非形成個案的變化。利用WRF網格納進(grid nudging)方法的敏感度實驗結果顯示,若減弱形成個案初始場北方之高壓,南海地區低層東北風伴隨之風切渦度將減弱,導致系統強度發展受限,甚或無法發展成TC。結果同時顯示,若增強形成個案發展期間上游之東北風,則環境的冷平流作用將變強,降低系統附近之對流不穩定度,系統發展強度則偏弱,甚或未發展為TC;反之亦然。上述實驗結果與合成分析結果一致,驗證了形成期間之環境低層東北風強度的變化,是主導TC形成與否的關鍵因素。 | zh_TW |
dc.description.abstract | Observations show that the percentage of tropical cyclone (TC) that formed in the South China Sea (SCS) in November and December is 16% of the total number of TCs in the SCS. This number is significantly higher than that in the western North Pacific (WNP). Therefore, this study examines TC formations in the SCS associated with the strong northeasterly monsoons during the late season. In order to understand the characteristics of TC formation process, it is equally important to examine those disturbances that developed to a well-organized stage but not to develop into TCs. The composites of non-formation cases thus are studied and compared with those of the formation cases. The composite analyses show that the formation cases in the late season have larger low-level vorticity and upper-level divergence compared to the non-formation cases. Another major difference between the formation and the non-formation cases is the low-level northeasterly to the northeast (or upstream) of the incipient disturbance, which weakens right before the pre-TC disturbance reaching 25 kt (~13 m s-1). The weakening of the upstream northeasterlies might be a critical factor for TC formation because it decreases the vertical wind shear and reduces the stabilizing effect associated with the cold and dry air intrusion. Results also show that the activity of Madden-Julian oscillation (MJO) seems not to play an important role in the formation rate of a cloud cluster to develop into TC.
The Weather Research and Forecasting (WRF) Model is used to simulate the formation and non-formation cases and the WRF grid nudging method is used to perform the sensitivicity tests. Results show that for a formation (non-formation) case, an increase (decrease) in the upstream low-level northeasterlies during the later period of the formation process would increase (decrease) the cold advection leading to the changes of the convective instability. The intensity of the model system will be weaker (stronger) or even become a non-formation (formation) case. These results are consistent with those of composites, and support the argument that the change in the upstream low-level northeasterlies is the key factor to dictate TC formation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:56:32Z (GMT). No. of bitstreams: 1 ntu-102-D94229004-1.pdf: 24034568 bytes, checksum: 3edf99db153a3fcc9d737af2b57abef7 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii ABSTRACT iv 目錄 vi 圖表目錄 viii 第一章 前言 1 1.1 文獻回顧 1 1.2 研究動機 6 第二章 資料使用 9 2.1 全球網格點與衛星資料 9 2.2 MJO 指數 10 2.3 WRF(Weather Research and Forecasting Model) 11 第三章 南海冬季熱帶氣旋形成之合成分析 13 3.1 氣候與綜觀環境特徵 13 3.2 形成個案之運動特徵 13 3.3 TC形成與非形成個案之合成分析 16 3.3.1 形成與非形成之綜觀特徵分析比較 17 3.3.2 MJO對TC形成機率的影響 19 3.4 小結 21 第四章 TC形成與非形成個案數值模式模擬 22 4.1 WRF模擬設計 22 4.2 0129w個案模擬 24 4.3 畫眉颱風個案模擬 24 4.3 非形成個案模擬 25 4.4 低層東北季風及溫度平流分析 27 第五章 TC形成與非形成個案敏感度實驗分析 29 5.1形成個案初始場環境東北風測試 29 5.2 積分後期之環境東北風測試 30 5.2.1 形成個案 30 5.2.2 非形成個案 32 5.3 敏感度實驗之分析 33 5.3.1 相當位溫平流分析 33 5.3.2 對流穩定度分析 34 5.4 小結 35 第六章 討論與結論 37 6.1 討論 37 6.2 結論 42 參考文獻 44 | |
dc.language.iso | zh-TW | |
dc.title | 南海地區冬季熱帶氣旋形成之分析 | zh_TW |
dc.title | An analysis of tropical cyclone formations in the South China Sea during the late season | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳泰然,吳俊傑,郭鴻基,林松錦,王重傑 | |
dc.subject.keyword | 南海,熱帶氣旋,熱帶氣旋形成,東北季風,冬季,MJO, | zh_TW |
dc.subject.keyword | South China Sea,tropical cyclone,tropical cyclone formation,northeasterly monsoon,late season,MJO, | en |
dc.relation.page | 139 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-09 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 23.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。