Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61224
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林水龍(Shuei-Liong Lin)
dc.contributor.authorPei-Ying Yehen
dc.contributor.author葉沛縈zh_TW
dc.date.accessioned2021-06-16T10:54:16Z-
dc.date.available2018-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-09
dc.identifier.citation1. Chang, F.-C. & Lin, S.-L. The role of angiopoietin-2 in progressive renal fibrosis. Journal of the Formosan Medical Association = Taiwan yi zhi 112, 175-176 (2013).
2. Chang, F.-C., Chou, Y.-H., Chen, Y.-T. & Lin, S.-L. Novel insights into pericyte–myofibroblast transition and therapeutic targets in renal fibrosis. Journal of the Formosan Medical Association = Taiwan yi zhi 111, 589-598 (2012).
3. Humphreys, B.D., et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. The American journal of pathology 176, 85-97 (2010).
4. Lin SL, D.J. macrophages in kidney injury and repair. Acta Nephrologica 26, 45-57 (2012).
5. Lin, S.L., Kisseleva, T., Brenner, D.A. & Duffield, J.S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. The American journal of pathology 173, 1617-1627 (2008).
6. Chen, Y.T., et al. Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney international 80, 1170-1181 (2011).
7. Lin, S.L., et al. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. The American journal of pathology 178, 911-923 (2011).
8. Nariaki Asada, M.T., Jin Nakamura, Akiko Oguchi, Misako Asada, Norio Suzuki, Ken-ichi Yamamura, Narihito Nagoshi, Shinsuke Shibata, Tata Nageswara Rao,, Hans Joerg Fehling, A.F., Naoko Minegishi, Toru Kita, Takeshi Kimura, & Hideyuki Okano, M.Y., and Motoko Yanagita. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. The Journal of clinical investigation 121, 3981-3990 (2011).
9. Nairz, M., Sonnweber, T., Schroll, A., Theurl, I. & Weiss, G. The pleiotropic effects of erythropoietin in infection and inflammation. Microbes and infection / Institut Pasteur 14, 238-246 (2012).
10. Chateauvieux, S., Grigorakaki, C., Morceau, F., Dicato, M. & Diederich, M. Erythropoietin, erythropoiesis and beyond. Biochemical pharmacology 82, 1291-1303 (2011).
11. Lu, K.Y., et al. Erythropoietin suppresses the formation of macrophage foam cells: role of liver X receptor alpha. Circulation 121, 1828-1837 (2010).
12. Erbayraktar, Z., et al. Nonerythropoietic tissue protective compounds are highly effective facilitators of wound healing. Mol Med 15, 235-241 (2009).
13. Brines, M., et al. Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proceedings of the National Academy of Sciences of the United States of America 101, 14907-14912 (2004).
14. Brines, M., et al. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proceedings of the National Academy of Sciences of the United States of America 105, 10925-10930 (2008).
15. Brines, M. & Cerami, A. Erythropoietin-mediated tissue protection: reducing collateral damage from the primary injury response. Journal of internal medicine 264, 405-432 (2008).
16. Brines, M. & Cerami, A. Discovering erythropoietin's extra-hematopoietic functions: biology and clinical promise. Kidney international 70, 246-250 (2006).
17. Arcasoy, M.O. Non-erythroid effects of erythropoietin. Haematologica 95, 1803-1805 (2010).
18. Okazaki, T., et al. Erythropoietin promotes the growth of tumors lacking its receptor and decreases survival of tumor-bearing mice by enhancing angiogenesis. Neoplasia (New York, N.Y.) 10, 932-939 (2008).
19. Bennett Cl, S.S.M.D.B. & et al. VEnous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA 299, 914-924 (2008).
20. Singh, A.K., et al. Correction of anemia with epoetin alfa in chronic kidney disease. The New England journal of medicine 355, 2085-2098 (2006).
21. Pfeffer, M.A., et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. The New England journal of medicine 361, 2019-2032 (2009).
22. Drueke, T.B., et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. The New England journal of medicine 355, 2071-2084 (2006).
23. Bahlmann, F.H., et al. Low-dose therapy with the long-acting erythropoietin analogue darbepoetin alpha persistently activates endothelial Akt and attenuates progressive organ failure. Circulation 110, 1006-1012 (2004).
24. Hamano, Y., et al. Low-dose darbepoetin alpha attenuates progression of a mouse model of aristolochic acid nephropathy through early tubular protection. Nephron. Experimental nephrology 114, e69-81 (2010).
25. Menne, J., et al. The Continuous Erythropoietin Receptor Activator Affects Different Pathways of Diabetic Renal Injury. Journal of the American Society of Nephrology 18, 2046-2053 (2007).
26. Chang, Y.T., Pan, S.Y. & Lin, S.L. Seeking for a way to revive erythropoietin production in chronic kidney disease. J Formos Med Assoc (2013).
27. Rossert, J. & Froissart, M. Role of Anemia in Progression of Chronic Kidney Disease. Seminars in nephrology 26, 283-289 (2006).
28. Bahlmann, F.H. & Fliser, D. Erythropoietin and renoprotection. Curr Opin Nephrol Hy 18, 15-20 10.1097/MNH.1090b1013e32831a32839dde (2009).
29. Yeh, P.-Y., Liao, F.-L. & Lin, S.-L. Is the renoprotective effect of erythropoietin in chronic kidney disease a myth? Journal of the Formosan Medical Association = Taiwan yi zhi (2013).
30. Park, S.H., et al. Erythropoietin decreases renal fibrosis in mice with ureteral obstruction: role of inhibiting TGF-beta-induced epithelial-to-mesenchymal transition. Journal of the American Society of Nephrology : JASN 18, 1497-1507 (2007).
31. Kitamura, H., et al. Nonerythropoietic derivative of erythropoietin protects against tubulointerstitial injury in a unilateral ureteral obstruction model. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 23, 1521-1528 (2008).
32. Fliser, D., Bahlmann, F. & Haller, H. EPO: renoprotection beyond anemia correction. Pediatric Nephrology 21, 1785-1789 (2006).
33. De Beuf, A., D'Haese, P.C. & Verhulst, A. Epoetin delta as an antifibrotic agent in the remnant kidney rat: a possible role for transforming growth factor beta and hepatocyte growth factor. Nephron. Experimental nephrology 115, e46-59 (2010).
34. Gouva, C., Nikolopoulos, P., Ioannidis, J.P. & Siamopoulos, K.C. Treating anemia early in renal failure patients slows the decline of renal function: a randomized controlled trial. Kidney international 66, 753-760 (2004).
35. Tapolyai, M., Kadomatsu, S. & Perera-Chong, M. r.hu-Erythropoietin (EPO) treatment of pre-ESRD patients slows the rate of progression of renal decline. BMC Nephrology 4, 3 (2003).
36. Brines, M. The therapeutic potential of erythropoiesis-stimulating agents for tissue protection: a tale of two receptors. Blood purification 29, 86-92 (2010).
37. Hand, C.C. & Brines, M. Promises and pitfalls in erythopoietin-mediated tissue protection: are nonerythropoietic derivatives a way forward? Journal of investigative medicine : the official publication of the American Federation for Clinical Research 59, 1073-1082 (2011).
38. Sinclair, A.M., et al. Functional erythropoietin receptor is undetectable in endothelial, cardiac, neuronal, and renal cells. Blood 115, 4264-4272 (2010).
39. Elliott, S., et al. Lack of expression and function of erythropoietin receptors in the kidney. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 27, 2733-2745 (2012).
40. Elliott, S., et al. Anti-Epo receptor antibodies do not predict Epo receptor expression. Blood 107, 1892-1895 (2006).
41. Martinez-Moczygemba, M. & Huston, D.P. Biology of common beta receptor-signaling cytokines: IL-3, IL-5, and GM-CSF. J Allergy Clin Immunol 112, 653-665; quiz 666 (2003).
42. Shearer, W.T., Rosenwasser, L.J., Bochner, B.S., Martinez-Moczygemba, M. & Huston, D.P. Biology of common β receptor–signaling cytokines: IL-3, IL-5, and GM-CSF. The Journal of allergy and clinical immunology 112, 653-665 (2003).
43. Leist, M., et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305, 239-242 (2004).
44. Nairz, M., et al. Erythropoietin contrastingly affects bacterial infection and experimental colitis by inhibiting nuclear factor-kappaB-inducible immune pathways. Immunity 34, 61-74 (2011).
45. Broxmeyer, H.E. Erythropoietin surprises: an immune saga. Immunity 34, 6-7 (2011).
46. Wynn, T.A. & Ramalingam, T.R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature medicine 18, 1028-1040 (2012).
47. Ovchinnikov, D.A. Macrophages in the embryo and beyond: much more than just giant phagocytes. Genesis (New York, N.Y. : 2000) 46, 447-462 (2008).
48. Duffield, J.S. Macrophages and immunologic inflammation of the kidney. Seminars in nephrology 30, 234-254 (2010).
49. Ricardo, S.D., van Goor, H. & Eddy, A.A. Macrophage diversity in renal injury and repair. The Journal of clinical investigation 118, 3522-3530 (2008).
50. Duffield, J.S. The inflammatory macrophage: a story of Jekyll and Hyde. Clinical science (London, England : 1979) 104, 27-38 (2003).
51. Lin, S.L., Castano, A.P., Nowlin, B.T., Lupher, M.L., Jr. & Duffield, J.S. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J Immunol 183, 6733-6743 (2009).
52. Castano, A.P., et al. Serum amyloid P inhibits fibrosis through Fc gamma R-dependent monocyte-macrophage regulation in vivo. Science translational medicine 1, 5ra13 (2009).
53. Lin, S.L., et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proceedings of the National Academy of Sciences of the United States of America 107, 4194-4199 (2010).
54. Lifshitz, L., Tabak, G., Gassmann, M., Mittelman, M. & Neumann, D. Macrophages as novel target cells for erythropoietin. Haematologica 95, 1823-1831 (2010).
55. Anders, H.J. & Ryu, M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney international 80, 915-925 (2011).
56. Lee, S., et al. Distinct macrophage phenotypes contribute to kidney injury and repair. Journal of the American Society of Nephrology : JASN 22, 317-326 (2011).
57. Gordon, S. Alternative activation of macrophages. Nature reviews. Immunology 3, 23-35 (2003).
58. Murray, P.J. & Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nature reviews. Immunology 11, 723-737 (2011).
59. Pesce, J.T., et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS pathogens 5, e1000371 (2009).
60. Hesse, M., et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol 167, 6533-6544 (2001).
61. Brines, M. & Cerami, A. The receptor that tames the innate immune response. Mol Med 18, 486-496 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61224-
dc.description.abstract紅血球生成素 (Erythropoietin,EPO) 是種多功能細胞因子,除了紅血球生成,紅血球生成素也表現組織保護的效果。近期證據指出紅血球生成素的多樣性功能是透過其與不同的受器結合而來,當紅血球生成素與EPO receptor (EPOR) 同型二聚體接合,執行紅血球生成;而當與EPOR及β common receptor (βcR 又稱作CD131) 所形成的異型二聚體接合,則執行組織修護。然而,許多獨立研究發現腎臟中並沒有EPOR,也無其訊息傳遞路徑的存在。
在腎臟纖維化的進程中,巨噬細胞扮演不可或缺的角色之一。Lin等人先前研究定義出小鼠體內巨噬細胞不同的亞群,其在腎臟的受損及修復扮演不同角色。又,Nariz等人研究指出紅血球生成素可透過抑制nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 而將巨噬細胞去活化。我們對EPO防護慢性腎臟病 (chronic kidney disease,CKD) 的病程進展是否是透過巨噬細胞感到有興趣。利用小鼠單側輸尿管阻塞 (unilateral ureteral obstruction,UUO)作為模型,我們發現紅血球生成素於慢性腎臟病確實有抑制纖維化的效果。雖然單側輸尿管阻塞的腎臟之巨噬細胞數量並不受影響,但其呈現被紅血球生成素去活化的情形,inducible nitric oxide synthase (iNOS), macrophage inflammatory protein-1α (Mip-1α、CCL3)、macrophage inflammatory protein 2 (Mip-2、CXCL2)、interleukin-1β (IL1-β)、tumor necrosis factor-α (TNF-α) 等表示促傷害型的巨噬細胞 (pro-injurious macrophages,M1) 的基因皆被調降;Arginase-1(Arg-1)、chemokine (C-C motif) ligand 17 (CCL-17)、chemokine (C-C motif) ligand 22 (CCL22)、transforming growth factor-β1 (TGF-β1)、insulin-like growth factor-1 (IGF-1) 等表示促纖維化型的巨噬細胞 (pro-fibrotic,M2) 的基因也皆被調降。骨髓衍生巨噬細胞(bone-marrow derived macrophages,BMDM)呈現相同結果。因此,我們認為同時去活化促傷害型(M1)及促纖維化型(M2)的巨噬細胞可能是EPO抑制腎臟纖維化的其中一種機制。未來的研究必須鑑定何種受器及訊息傳遞鏈參與EPO對腎臟中巨噬細胞的影響。長期的目標希望可以透過瞭解EPO與位於腎臟內標的物的交互作用,發展EPO的衍生物或類似物應用於防止慢性腎病惡化。
zh_TW
dc.description.abstractErythropoietin (EPO) is a multi-functional cytokine. In addition to erythropoiesis, EPO has been shown its tissue protective effect. Current evidence suggests that the pleiotropic effects of EPO are mediated by homodimer EPO receptor (EPOR) and heterocomplex composed of EPOR and β common receptor (βcR also known as CD131) for erythropoiesis and tissue protection respectively. However many independent studies found no expression and functional signaling of EPOR in the kidney. Macrophages are one of the key players in the progression of renal fibrosis. Previous studies by Lin et al. have defined macrophage subpopulations who play distinctive roles in renal injury and repair in mice. Evidence from Nariz et al. suggests macrophages can be deactivated by EPO through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition. We are intrigued by whether EPO protected chronic kidney disease (CKD) from progression through targeting macrophages. Using mouse models of unilateral ureteral obstruction (UUO), we have confirmed the antifibrotic effect of EPO in CKD. Although the cell numbers were not affected, UUO kidney macrophages were deactivated by EPO in vivo, as demonstrated by the downregulation of inducible nitric oxide synthase (iNOS), macrophage inflammatory protein-1α (Mip-1α, CCL3), macrophage inflammatory protein 2 (Mip-2, CXCL2), interleukin-1β (IL1-β), tumor necrosis factor-α (TNF-α) genes, which represent as pro-injurious (M1) macrophages; and Arginase-1 (Arg-1), chemokine (C-C motif) ligand 17 (CCL-17), chemokine (C-C motif) ligand 22 (CCL22), transforming growth factor-β1 (TGF-β1), insulin-like growth factor-1 (IGF-1) genes, which represent as pro-fibrotic (M2) macrophages. And the same result was detected by using bone marrow-derived macrophages (BMDM) in vitro. Therefore, we demonstrated that one of the mechanisms underlying the antifibrotic effect of EPO might be deactivating both pro-injurious and pro-fibrotic macrophages. Further studies need to identify the receptors and intracellular signaling mediating the effect of EPO on kidney macrophages. Long-term aim is to develop a novel EPO derivative or mimetic for renoprotection through understanding the interaction between EPO and its targets in the kidney.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:54:16Z (GMT). No. of bitstreams: 1
ntu-102-R00441016-1.pdf: 2359224 bytes, checksum: 6e1590fa1a4018fff14bb059d39bbea4 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsChapter 1 Introduction
1.1 Chronic Kidney Disease and Renal Fibrosis………………………………...1
1.2 Erythropoietin
1.2.1 Erythropoietin Overview…………..……………………………………..2
1.2.2 Erythropoietin Dosage…………………………………………………...3
1.2.3 Renoprotective Effect in CKD…………………………….……………..4
1.2.4 Receptors for EPO Signaling……………………………….……………7
1.3 Macrophages
1.3.1 Macrophage Overview…………………………………………………...9
1.3.2 Macrophage Heterogeneity……………………………………………..10
1.4 Purpose of Study……………………………………………………………..14
Chapter 2 Material and Methods
2.1 Material
2.1.1 Chemicals…………………………………………………………….…15
2.1.2 Buffer…………………………………………………………………...18
2.1.3 Antibodies………………………………………………………………20
2.2 Methods
2.2.1 Animal Model
2.2.1.1. Unilateral ureteral obstruction (UUO) model…………….....…..21
2.2.1.2. Experimental design…………..……………………………...….21
2.2.2 Cell
2.2.2.1. Isolation of peritoneal macrophages……………………………..22
2.2.2.2. Isolation of kidney macrophages………………….....…………..23
2.2.2.3. Preparation of L929 Conditioned Medium (L929 CM)………....24
2.2.2.4. Culture of bone marrow-derived macrophages…………...…..…24
2.2.2.5. In vitro polarization of macrophages and rhEPO treatment……..25
2.2.3 Animal Tissue Preparation
2.2.3.1 Picrosirius Red Stain……………………………...……….…..…25
2.2.3.2 Immunofluorescence…………………………………..…...…….26
2.2.3.3 Reverse Transcription and Polymerase Chain Reactions (RT-PCR)………………………………………………..…...…27
2.2.3.4 Fluorescence-activated cell sorting (FACS)………………..….....28
2.2.4 Statistical Analysis…………………………………………………….28
Chapter 3 Results
3.1 rhEPO treatment attenuated renal fibrosis 14 days after UUO without an erythropoiesis effect………………………………………….…………...…29
3.2 CD131 gene expression increased as UUO progressed……………………...29
3.3 CD131, not EPOR was expressed in macrophages in vivo………………….30
3.4 Both EPOR and CD131 were expressed in macrophages in vitro……….…..30
3.5 rhEPO down-regulated the expression of subpopulation-biased cytokines in UUO kidney macrophages without affecting the cell numbers………….…..30
3.6 rhEPO deactivated bone marrow-derived macrophages…………..…………31
Chapter 4 Discussion
4.1 rhEPO treatment attenuated renal fibrosis without an erythropoietic effect....32
4.2 Macrophages might be one of target cells of EPO in kidney..........................32
4.3 rhEPO down-regulated the expression of subpopulation-biased cytokines in vivo and in vitro………………..……………………………………….…...34
Chapter 5 Conclusion and Future Prospect…………………………………………..37
Chapter 6 References ………………………………………..……………………….38
Chapter 7 Figures and Tables………………………………………………………...42
Chapter 8 Appendix: papers already published………………………………………64
dc.language.isoen
dc.subject紅血球生成素zh_TW
dc.subjectβ common receptorzh_TW
dc.subject巨噬細胞zh_TW
dc.subject腎臟纖維化zh_TW
dc.subjecterythropoietinen
dc.subjectmacrophageen
dc.subjectrenal fibrosisen
dc.subjectβ common receptoren
dc.title紅血球生成素透過減少生物體內巨噬細胞活化以抑制腎臟纖維化zh_TW
dc.titleErythropoietin Inhibits Renal Fibrosis through Macrophage Deactivation in vivoen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳明修(Ming-Shiou Wu),姜文智(Wen-Chih Chiang)
dc.subject.keywordβ common receptor,紅血球生成素,巨噬細胞,腎臟纖維化,zh_TW
dc.subject.keywordβ common receptor,erythropoietin,macrophage,renal fibrosis,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2013-08-09
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved