請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61186完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳銘憲(Ming-Syan Chen) | |
| dc.contributor.author | Chih-Chun Chan | en |
| dc.contributor.author | 詹智鈞 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:51:46Z | - |
| dc.date.available | 2013-08-14 | |
| dc.date.copyright | 2013-08-14 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-09 | |
| dc.identifier.citation | [1] eMarketer: Mobile banners continue to boast high click rates: http://www.emarketer.com/Article/Mobile-Banners-Continue-Boast-High-Click-Rates/1009299
[2] Mediamind Golbal Benchmarks Report H1 2012: http://www.iab.net/media/file/MediaMind_Benchmark_H1_2012.pdf page 92. [3] Smartphone users around the world – Statistics and facts: http://www.go-gulf.com/blog/smartphone [4] The Flurry Blog: Flurry Five-Year Report: It’s an App World. The Web Just Lives in it : http://blog.flurry.com/bid/95723/Flurry-Five-Year-Report-It-s-an-App-World-The-Web-Just-Lives-in-It [5] The Realtime Report: US Mobile Internet Use to Increase 25%, Smartphone Use Nearly 50% in 2011: http://therealtimereport.com/2011/08/26/us-mobile-internet-use-to-increase-25-smartphone-use-nearly-50-in-2011/ [6] L. Aalto, N. Gothlin, J. Korhonen, and T. Ojala, “Bluetooth and WAP push based location-aware mobile advertising system”, in MobiSYS ’04: Proceedings of the 2nd international conference on Mobile systems, applications, and services, pages 49–58. ACM Press, 2004. [7] P. Barwise, C. Strong, “Permission-based mobile advertising”, in Journal of Interactive Marketing, 16, 1 pp. 14-24, 2002. [8] R. Bell and Y. Koren, “Improved neighborhood-based collaborative filtering,” in Proceedings of KDD Cup and Workshop, 2007. [9] N. Dehak, R. Dehak, J. Glass, D. Reynolds, and P. Kenny, “Cosine similarity scoring without score normalization techniques”, in Odyssey, 2010. [10] S. Dhar and U. Varshney, “Challenges and business models for mobile location-based services and advertising”, in Commun. ACM, 54(5):121–128, 2011. [11] M. Ester, H.P. Kriegel, J. Sander, X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise”, in Proceedings of Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, pp. 226–231, 1996. [12] H. Haddadi, P. Hui, and I. Brown, “MobiAd: Private and Scalable Mobile Advertising”, in Proceedings of the 5th ACM International Workshop on Mobility in the Evolving Internet Architecture, MobiArch ’10, pages 33–38, 2010. [13] X.N. Lam, T. Vu, T.D. Le, and A.D. Duong, “Addressing cold-start problem in recommendation systems”, in ICUIMC’08, pages 208–211, 2008. [14] H. Lee, K.W. Lee, K.M. Lee, H. Choo, 'Similarity attraction effects in mobile advertisement: Interaction between user personality and advertisement personality”, icoin, pp.506-511, The International Conference on Information Network, 2012. [15] B. Sarwa, G. Karypis, J. Konstan. and J. Riedl, “Item-based collaborative filtering recommendation algorithms”, in WWW, pages 285–295, 2001. [16] X. Su, T. M. Khoshgoftaar, “A survey of collaborative filtering techniques”, in Advances in Artificial Intelligence, 2009. [17] M.M. Tsang, S.C. Ho, and T.P. Liang, “Consumer attitudes toward mobile advertising: An empirical study” in International Journal of Electronic Commerce (SSCI) / 8 (3),pp.65-78, 2004. [18] N. Vallina-Rodriguez, J. Shah, A. Finamore, Y. Grunenberger, H. Haddadi, and J. Crowcroft, “Breaking for Commercials: Characterizing MobileAdvertising”, in IMC 2012. ACM, 2012. [19] J.Y. Zhu and B.C.Y. Tan, “Effectiveness of blog advertising: Impact of communicator expertise, advertising intent, and product involvement” presented at the 28th Int. Conf. Info. Syst., Montreal, QC, Canada, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61186 | - |
| dc.description.abstract | 行動裝置在這幾年來廣為人們使用和傳播。人們透過在行動裝置內各種應用程序,可以容易地在任何地方與人聯繫或做任何事情。因此,行動環境下的智慧管理已成為一個重要的研究課題。由於應用程序在提供其主要服務的同時也可以作為廣告的載體,適當的行動廣告推薦策略有利於用戶,應用程序提供商(即,廣告運營商),和廣告提供商。所以,在這篇研究中,我們提出了一個新的框架程序DRAM以在行動裝置上的應用程序推薦廣告。我們提出的框架會萃取如使用者的基本資訊、使用的應用程序、廣告點擊的歷史紀錄等各方面的性質和特徵以進行分析。
我們提出的框架程序會根據所萃取的各性質特徵將使用者分群,並計算各群使用者適合推薦的行動廣告。以行動紀錄檔的真實數據做實驗的結果顯示,與原方法相比, DRAM更可以為使用者提供其有興趣的廣告,並提昇使用者的平均廣告點擊率。 | zh_TW |
| dc.description.abstract | Mobile devices have been dramatically spread in recent years. People could do anything anywhere and connect with others easily via various apps on their devices in hand. Therefore, knowledge management in mobile environments becomes an important research topic. Since apps can act as the carriers of advertisements while providing the main functions, proper mobile advertising strategy should be developed to benefit users, app providers (i.e., advertisement carriers), and advertisement providers. Thus, in this work, we propose a novel framework DRAM to recommend advertisements for apps on mobile devices. The proposed framework extracts features in different aspects, such as client profiles, carrier apps, and clicked advertisement history.
With the extracted features, the framework partitions the clients into groups and decides the suitable advertisements for each group of clients by computing the target advertisements. The experimental results on real-world mobile log data demonstrate that DRAM can provide interesting advertisements to each user such that the average CTR (click-through rate) is improved comparing with the baselines. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:51:46Z (GMT). No. of bitstreams: 1 ntu-102-R00921036-1.pdf: 809254 bytes, checksum: d3869891399c9bd200b7a996691489b6 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Acknowledgments i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii Chapter 1 Introduction 1 Chapter 2 Related Work 5 Chapter 3 Training Procedures 8 3.1 Observation and Basic Assumption 8 3.2 Mobile Features 9 3.3 Similarity Score Function 10 3.4 Client Clustering 13 3.5 Target Advertisement 17 Chapter 4 Dynamic Recommendation 21 4.1 Procedures and Similarity Threshold 21 4.2 Dynamic Weight-Mapping Function 23 Chapter 5 Experiment and Evaluation 24 5.1 Measurement for Evaluation 24 5.2 Neighborhood-based Collaborative Filtering 26 5.3 Data Sets 26 5.4 System Tuning for DRAM 28 5.5 Performance and Comparison 33 Chapter 6 Conclusion and Future Work 35 REFERENCE 36 | |
| dc.language.iso | en | |
| dc.subject | 推薦系統 | zh_TW |
| dc.subject | 行動廣告 | zh_TW |
| dc.subject | 動態推薦 | zh_TW |
| dc.subject | mobile ad | en |
| dc.subject | recommendation system | en |
| dc.subject | dynamic recommendation | en |
| dc.title | 行動裝置上之動態廣告推薦訊息 | zh_TW |
| dc.title | Dynamic Recommendation for Advertising Messages on Mobile Devices | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林永松(Yeong-Sung Lin),呂俊賢(Chun-Shien Lu),曾祺堯(Chi-Yao Tseng),陳正君(Janet Chen) | |
| dc.subject.keyword | 行動廣告,推薦系統,動態推薦, | zh_TW |
| dc.subject.keyword | mobile ad,recommendation system,dynamic recommendation, | en |
| dc.relation.page | 38 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-09 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 790.29 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
