Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61184
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建中(Chien-Chung Chen)
dc.contributor.authorPei-Yin Chenen
dc.contributor.author陳姵吟zh_TW
dc.date.accessioned2021-06-16T10:51:39Z-
dc.date.available2018-08-14
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-08-09
dc.identifier.citationAchtman, R. L., Hess, R. F., & Wang, Y. Z. (2003). Sensitivity for global shape detection. Journal of Vision, 3, 616-624.
Albright, T., & Stoner, G. (2002). Contextual influences on visual processing. Annual Review of Neuroscience, 25, 339-379.
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433-436.
Cannon, M. W., & Fullenkamp, S. C. (1991). Spatial interaction in apparent contrast: Inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations. Vision Research, 31, 1985-1998.
Chen, C. C., Tyler, C. W. (2008). Excitatory and inhibitory interaction fields of flankers revealed by contrast-masking functions. Journal of Vision, 8, 11-14.
Chen, C. C. (2009). A masking analysis of Glass pattern perception. Journal of Vision, 9, 1-11.
Chubb, C., Sperling, G., & Solomon, J. A. (1989). Texture interactions determine perceived contrast. Processing of the National Academy of Sciences of the United States of America, 86, 9631-9635.
Clifford, C. W. G, Holcombe, A. O., & Pearson, J. (2004). Rapid global form binding with loss of associated colors. Journal of Vision, 4, 1090-1101.
Cutting, J., E., & Millard, R. T. (1984). Three gradients and the perception of flat and curved surfaces. Journal of Experimental Psychology, 113, 198-216.
Dakin, S. C. (1997). The detection of structure in glass patterns: Psychophysics and computational models. Vision Research, 37, 2227-2246.
Dickinson, J., & Badcock, D. (2007). Selectivity for coherence in polar orientation in human form vision. Vision Research, 37, 2227-2246.
Glass, L. (1969). Moire effects from random dots. Nature, 223, 578-580.
Glass, L., & Perez, R. (1973). Perception of random dot interferences patterns. Nature, 246, 360-362.
Glass, L., & Switkes, E. (1976). Pattern recognition in humans: Correlations which cannot be perceived. Perception, 5, 67-72.
Huang, P. C., Chen, C. C., & Tyler, C. W. (2012). Collinear facilitation over space and depth. Journal of Vision, 12, 1-9.
Khuu, S. E., & Hayes, A. (2005). Glass-pattern detection is tuned for stereo-depth. Vision Research, 45, 2461-2469.
Kontsevich, L., & Tyler, C. (1999). Bayesian adaptive estimation of psychometric slope and threshold. Vision Research, 39, 2729-2737.
Lan, P. H., & Brain, J. R. (2012). Perceiving in depth: Stereoscopic vision. Oxford, NY: Oxford University Press.
Li, H. H., & Chen, C. C. (2011). Surround modulation of global form perception. Journal of Vision, 11, 1-9.
Nakayama, K., He, Z. J., & Shimojo, S. (1995). Visual surface representation: A critical link between lower-level and higher-level vision. In S.M. Kosslyn & D.N. Osherson (Eds.), In invitation to cognitive science. Cambridge, MA: MIT Press.
Nakayama, K., Shimojo, S., & Silverman, G. H. (1989). Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects. Perception, 18, 55-68.
Nakayama, K., & Silverman, G. H. (1986). Serial and parallel processing of visual feature conjunctions. Nature, 320, 264-265.
Ostwald, D., Lam, J. M., Li, S., & Kourtzi, Z. (2008). Neural coding of global form in the human visual cortex. Journal of Neurophysiology, 99, 2456-2469.
Parkes, L, Lund, J., Angelucci, A., Solomon, J. A., & Morgan, M. (2001). Compulsory averaging of crowded orientation signals in human vision. Nature Neuroscience, 4, 739-744.
Polat, U., & Sagi, D. (1993). Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments. Vision Research, 33, 993-999.
Polat, U., & Sagi, D. (1994). The architecture of perceptual spatial interactions. Vision Research, 34, 73-78.
Prazdny, K. (1984). On the perception of Glass patterns. Perception, 13, 469-478.
Schwartz, O., Hsu, A., & Dayan, P. (2007). Space and time in visual context. Nature Reviews Neuroscience, 8, 522-535.
Seu, L., & Ferrera, V. (2001). Detection threshold for spiral Glass patterns. Vision Research, 41, 3785-3790.
Sio, J. L.-T., & Chen, C. C. (2012). 3D surface configuration modulated 2D symmetry detection. I-Perception, 2, 404.
Theeuwes, J., Atchley, P., & Kramer, A. F. (1998). Attentional control within 3-D space. Journal of Experimental Psychology: Human Perception and Performance, 24, 1476-1485.
Tyler, C. W. (2005).Spatial form as inherently three-dimensional. In M. Jenkin & L. Harris (Eds.), Seeing spatial form (pp. 95-114). Oxford, UK: Oxford University Press.
Tyler, C. W., & Kontsevich, L. L. (1995). Mechanisms of stereoscopic processing: Stereoattention and surface perception in depth reconstruction. Perception, 24, 127-153.
Webb, B., Roach, N., & Peirce, J. (2008). Masking exposes multiple global form mechanisms. Journal of Vision, 8, 1-10.
Wilkinson, F., Wilson, H. R., &, Ellemberg, D. (1997). Lateral interactions in peripherally viewed texture arrays. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 14, 2057-2068.
Wilson, H. R., & Wilkinson, F. (1998). Detection of global structure in Glass patterns: Implication for form vision. Vision Research, 38, 2933-2947.
Wilson, H. R., Wilkinson, F., & Asaad, W. (1997). Concentric orientation summation in human for vision. Vision Research, 37, 2325-2330.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61184-
dc.description.abstractThe percept of the global form of a Glass pattern can be modulated by the presence of a surround Glass pattern (Li &Chen, 2010). This modulation depends on the global structures of both the central target and the surround. Here, we investigated whether such modulation can be influenced by the 3D configuration of the stimuli. The stimuli contained a central target (2.5 deg radius) and an annulus surround (2.1 deg width). Both the target and surround were either concentric, radial or spiral Glass patterns (4% dot density). The depth modulations were achieved by binocular disparity. There were six 3D configurations: The target and surround were (A) on the same frontoparallel plane; (B) on different frontoparallel planes; (C) on the same 45 deg slanted plane; (D) on different slanted planes (+/-45 deg); (E) on the same concave or convex surface; and (F) on different concave or convex surfaces. The coherence thresholds of the central target Glass patterns were measured at 75% accuracy with a 2AFC paradigm with or without the presence of a surround Glass pattern. When they were on the same surface, the concentric surround suppressed the detection of a concentric target, and the spiral surround suppressed the detection of both concentric and radial target when the surface was frontoparallel or slanted, but not concave/convex. Such surround modulation effect was reduced or abolished when the target and the surround were on different surfaces. The surround modulation occurred only when the target and surround were coplanar regardless the depth difference between the target and the surround. Our results show that the surround modulation in Glass patterns depends on plane assignment.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:51:39Z (GMT). No. of bitstreams: 1
ntu-102-R00227105-1.pdf: 1534609 bytes, checksum: 038ebf20a052f16e0ea784fa716fedff (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsIntroduction 1
Method 6
Apparatus 6
Stimuli 7
Procedure 12
Observers 13
Results 15
Discussion 22
Conclusion 27
Reference 28
Figures 33
dc.language.isoen
dc.subject形狀zh_TW
dc.subject斜面zh_TW
dc.subject2Dzh_TW
dc.subject深度zh_TW
dc.subject平面zh_TW
dc.subject3Dzh_TW
dc.subject結構zh_TW
dc.subjectGlass patternzh_TW
dc.subjectdepthen
dc.subjectsurfaceen
dc.subjectconfigurationen
dc.subjectGlass patternsen
dc.subject3Den
dc.subject2Den
dc.subjectshapeen
dc.subjectslanten
dc.title三度空間平面結構對知覺組織圖形之周邊調節效應的影響zh_TW
dc.titleSurface Configuration Effect on Surround Modulation in Glass patternsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee袁之琦,吳佳瑾
dc.subject.keyword3D,2D,Glass pattern,結構,平面,深度,斜面,形狀,zh_TW
dc.subject.keyword3D,2D,Glass patterns,configuration,surface,depth,slant,shape,en
dc.relation.page39
dc.rights.note有償授權
dc.date.accepted2013-08-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved