Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61183
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳彥仰(Mike Y. Chen)
dc.contributor.authorPai-Chien Yenen
dc.contributor.author顏百謙zh_TW
dc.date.accessioned2021-06-16T10:51:35Z-
dc.date.available2020-07-20
dc.date.copyright2020-07-20
dc.date.issued2020
dc.date.submitted2020-07-01
dc.identifier.citation[1] V. Agostini, G. Balestra, and M. Knaflitz. Segmentation and classification of gait cycles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(5):946–952, 2014.
[2] H. Akay, R. Xu, D. Han, T. Teo, and S.-G. Kim. Energy harvesting combat boot for satellite positioning. Micromachines, 9(5):244, 2018.
[3] I. J. Alexander, E. Y. Chao, and K. A. Johnson. The assessment of dynamic foot-to- ground contact forces and plantar pressure distribution: a review of the evolution of current techniques and clinical applications. Foot ankle, 11(3):152–167, 1990.
[4] R. Chin, E. T. Hsiao-Wecksler, E. Loth, G. Kogler, S. D. Manwaring, S. N. Tyson, K. A. Shorter, and J. N. Gilmer. A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop. Journal of neuroengineering and rehabilitation, 6(1):19, 2009.
[5] S. Das, Y. Kishishita, T. Tsuji, C. Lowell, K. Ogawa, and Y. Kurita. Forcehand glove: a wearable force-feedback glove with pneumatic artificial muscles (pams). IEEE Robotics and Automation Letters, 3(3):2416–2423, 2018.
[6] A. Delazio, K. Nakagaki, R. L. Klatzky, S. E. Hudson, J. F. Lehman, and A. P. Sam- ple. Force jacket: Pneumatically-actuated jacket for embodied haptic experiences. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, page 320. ACM, 2018.
[7] A. Erturk and D. J. Inman. Piezoelectric energy harvesting. John Wiley Sons, 2011.
[8] H. Fu, K. Cao, R. Xu, M. A. Bhouri, R. Martínez-Botas, S.-G. Kim, and E. M. Yeat- man. Footstep energy harvesting using heel strike-induced airflow for human activity sensing. In 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pages 124–129. IEEE, 2016.
[9] H. Fu, R. Xu, K. Seto, E. Yeatman, and S. Kim. Energy harvesting from human motion using footstep-induced airflow. In Journal of Physics: Conference Series, volume 660, page 012060. IOP Publishing, 2015.
[10] P. Glick, S. A. Suresh, D. Ruffatto, M. Cutkosky, M. T. Tolley, and A. Parness. A soft robotic gripper with gecko-inspired adhesive. IEEE Robotics and Automation Letters, 3(2):903–910, 2018.
[11] J.Gong,D.-Y.Huang,T.Seyed,T.Lin,T.Hou,X.Liu,M.Yang,B.Yang,Y.Zhang, and X.-D. Yang. Jetto: Using lateral force feedback for smartwatch interactions. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, page 426. ACM, 2018.
[12] T. Goto, S. Das, Y. Kurita, and K. Kunze. Artificial motion guidance: an intuitive device based on pneumatic gel muscle (pgm). In The 31st Annual ACM Symposium on User Interface Software and Technology Adjunct Proceedings, pages 182–184. ACM, 2018.
[13] L. He, C. Xu, D. Xu, and R. Brill. Pneuhaptic: delivering haptic cues with a pneu- matic armband. In Proceedings of the 2015 ACM International Symposium on Wear- able Computers, pages 47–48. ACM, 2015.
[14] M. J. Hessert, M. Vyas, J. Leach, K. Hu, L. A. Lipsitz, and V. Novak. Foot pressure distribution during walking in young and old adults. BMC geriatrics, 5(1):8, 2005.
[15] Y. Kishishita, A. V. Ramirez, S. Das, C. Thakur, Y. Yanase, and Y. Kurita. Mus- cleblazer: a wearable laser tag module powered by pgm-induced force-feedback. In Proceedings of the First Superhuman Sports Design Challenge: First International Symposium on Amplifying Capabilities and Competing in Mixed Realities, page 2. ACM, 2018.
[16] Y. Kojima, Y. Hashimoto, and H. Kajimoto. A novel wearable device to present localized sensation of wind. In Proceedings of the International Conference on Ad- vances in Computer Enterntainment Technology, pages 61–65. ACM, 2009.
[17] J. Kymissis, C. Kendall, J. Paradiso, and N. Gershenfeld. Parasitic power harvest- ing in shoes. In Digest of Papers. Second International Symposium on Wearable Computers (Cat. No. 98EX215), pages 132–139. IEEE, 1998.
[18] X. Liang, H. K. Yap, J. Guo, R. C. H. Yeow, Y. Sun, and C. K. Chui. Design and characterization of a novel fabric-based robotic arm for future wearable robot appli- cation. In 2017 IEEE International Conference on Robotics and Biomimetics (RO- BIO), pages 367–372. IEEE, 2017.
[19] D. Ma, G. Lan, W. Xu, M. Hassan, and W. Hu. Sehs: Simultaneous energy har- vesting and sensing using piezoelectric energy harvester. In 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI), pages 201–212. IEEE, 2018.
[20] K. Ogawa, T. Ikeda, and Y. Kurita. Unplugged powered suit for superhuman tennis. In 2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics, pages 361–364. IEEE, 2018.
[21] H. Pohl, P. Brandes, H. Ngo Quang, and M. Rohs. Squeezeback: pneumatic com- pression for notifications. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pages 5318–5330. ACM, 2017.
[22] H. Pohl, F. Hoheisel, and M. Rohs. Inhibiting freedom of movement with compres- sion feedback. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pages 1962–1969. ACM, 2017.
[23] P. Polygerinos, S. Lyne, Z. Wang, L. F. Nicolini, B. Mosadegh, G. M. Whitesides, and C. J. Walsh. Towards a soft pneumatic glove for hand rehabilitation. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1512– 1517. IEEE, 2013.
[24] N. Ranasinghe, P. Jain, S. Karwita, D. Tolley, and E. Y.-L. Do. Ambiotherm: en- hancing sense of presence in virtual reality by simulating real-world environmental conditions. In Proceedings of the 2017 CHI Conference on Human Factors in Com- puting Systems, pages 1731–1742. ACM, 2017.
[25] N. Ranasinghe, P. Jain, N. Thi Ngoc Tram, K. C. R. Koh, D. Tolley, S. Karwita, L. Lien-Ya, Y. Liangkun, K. Shamaiah, C. Eason Wai Tung, et al. Season traveller: Multisensory narration for enhancing the virtual reality experience. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, page 577. ACM, 2018.
[26] M. Rietzler, K. Plaumann, T. Kränzle, M. Erath, A. Stahl, and E. Rukzio. Vair: Simulating 3d airflows in virtual reality. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pages 5669–5677. ACM, 2017.
[27] J. G. Rocha, L. M. Goncalves, P. Rocha, M. P. Silva, and S. Lanceros-Mendez. Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE transactions on industrial electronics, 57(3):813–819, 2010.
[28] W. Sakoda, A. V. Ramirez, K. Ogawa, T. Tsuji, and Y. Kurita. Reinforced suit using low pressure driven artificial muscles for baseball bat swing. In Proceedings of the 9th Augmented Human International Conference, page 30. ACM, 2018.
[29] R. Soames. Foot pressure patterns during gait. Journal of biomedical engineering, 7(2):120–126, 1985.
[30] S.-Y. Teng, T.-S. Kuo, C. Wang, C.-h. Chiang, D.-Y. Huang, L. Chan, and B.-Y. Chen. Pupop: Pop-up prop on palm for virtual reality. In The 31st Annual ACM Symposium on User Interface Software and Technology, pages 5–17. ACM, 2018.
[31] C. Thakur, K. Ogawa, and Y. Kurita. Active passive nature of assistive wearable gait augment suit for enhanced mobility. Journal of Robotics and Mechatronics, 30(5):717–728, 2018.
[32] A. C. Turkmen and C. Celik. Energy harvesting with the piezoelectric material inte- grated shoe. Energy, 150:556–564, 2018.
[33] Wikipedia contributors. Hooke’s law — Wikipedia, the free encyclope-dia. https://en.wikipedia.org/w/index.php?title=Hooke%27s_law oldid= 888959580, 2019. [Online; accessed 4-April-2019].
[34] H.K.Yap,J.H.Lim,F.Nasrallah,J.C.Goh,andR.C.Yeow.Asoftexoskeletonfor hand assistive and rehabilitation application using pneumatic actuators with variable stiffness. In 2015 IEEE international conference on robotics and automation (ICRA), pages 4967–4972. IEEE, 2015.
[35] K. Ylli, D. Hoffmann, A. Willmann, P. Becker, B. Folkmer, and Y. Manoli. En- ergy harvesting from human motion: exploiting swing and shock excitations. Smart Materials and Structures, 24(2):025029, 2015.
[36] Z. Zhang, K. Du, X. Chen, C. Xue, and K. Wang. An air-cushion triboelectric nano- generator integrated with stretchable electrode for human-motion energy harvesting and monitoring. Nano Energy, 53:108–115, 2018.
[37] J. Zhao and Z. You. A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors, 14(7):12497–12510, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61183-
dc.description.abstract氣動系統已被用於觸覺回饋、輔助、復健、軟性機器人、人類強化等等各式各樣的應用中。這些應用皆依靠加壓氣體驅動,而現今的加壓氣體來源主要為拋棄式高壓鋼瓶或電力驅動的空氣壓縮機等耗費大量能量之裝置。儲存人行走時之能量,為可自我維持的穿戴式系統提供了發展機會。然而當前的穿戴式氣壓儲存系統皆使用固定體積的存儲容器,這些容器需要耗費大量的行走步數加壓至可驅動氣動裝置之氣壓,並且許多已儲存的能量並不能被有效使用。因此,我們提出了一個使用可變化體積的定壓氣瓶作為儲存媒介的系統來改善上述問題。經由將儲存之氣壓保持在驅動氣動應用之目標壓力,我們的系統能夠顯著地提升氣壓儲存系統的可用性,不僅大幅降低了加壓至目標壓力所需要的步數,同時也最大程度的妥善利用已儲存之能量。對系統的評測結果顯示,在同樣使用最大體積 200 毫升儲存容器的條件下,我們的系統只需要行走一步即可達到目標壓力,而使用固定體積容器的系統則需要多耗費 4 倍的行走步數才能達到目標氣壓。同時在雙方容器儲存相同氣壓的狀況下驅動氣動人工肌肉,我們的系統可以支持約高於 1 倍的驅動次數。zh_TW
dc.description.abstractPneumatic actuation systems have been developed for a variety of wearable haptic feedback, human-augmentation, assistive, rehabilitation, and soft robotics applications. These systems actuate through pressurized air, which currently relies on either compressed air tanks that require replacement or electrically-powered air compressors that require significant power consumption. Energy harvesting from human motion offers the opportunity to develop self-sustaining wearable systems. However, current wearable pneumatic harvesting approach uses fixed-sized storage, which requires significant footsteps to reach usable pressure, leaving much stored energy underutilized, and the air pumps under foot may cause uncomfortable feeling. We present StepUp, which harvests and stores compressed air using re-sizable and constant-pressure storage. By storing air at the target actuation pressure, StepUp dramatically improves the usability of pneumatic harvesting systems by minimizing the number of footsteps needed to become usable, maximizing energy utilization while reducing the uncomfortable feeling caused by air pumps. Evaluation of our prototype with pneumatic artificial muscles shows that StepUp was capable of reaching usable pressure after just a single footstep, which was 4X faster than fixed-sized storage of the same 200mL volume (1 vs 5 steps), supporting nearly 2X the number of actuations (21 vs 11 times), and significantly more comfort than fixed-sized storage.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:51:35Z (GMT). No. of bitstreams: 1
U0001-3006202015431600.pdf: 22473669 bytes, checksum: 62195607b92a9ef65cee96c89a632fd9 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
1 Introduction 1
2 Related Work 5
2.1 Energy Harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Wearable Pneumatic Applications . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Pneumatic Applications on the Head . . . . . . . . . . . . . . . . 6
2.2.2 Pneumatic Applications on the Body . . . . . . . . . . . . . . . . 6
3 Wearable Pneumatic Energy Harvesting 8
3.1 Mechanism of traditional pneumatic energy harvesting system . . . . . . 8
3.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Constant-Pressure Air Storage Design . . . . . . . . . . . . . . . . . . . 11
3.4 Mechanism of StepUp . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Implementation 17
5 Evaluation 18
5.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Ramp Up Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Energy Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6 User Experience Evaluation 22
6.1 User Comfort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7 Example Applications using StepUp 24
7.1 Wearable Force Feedback VR Shooting Game . . . . . . . . . . . . . . . 25
7.2 Wearable Haptic Guidance System . . . . . . . . . . . . . . . . . . . . . 26
7.3 Pneumatic Tail for Self-Expression . . . . . . . . . . . . . . . . . . . . . 26
8 LIMITATIONS AND FUTURE WORK 27
9 CONCLUSION 28
Bibliography 29
dc.language.isoen
dc.subject能量儲存zh_TW
dc.subject可穿戴zh_TW
dc.subject氣動人工肌肉zh_TW
dc.subject觸覺回饋zh_TW
dc.subject氣動應用zh_TW
dc.subjectEnergy Harvestingen
dc.subjectPneumatic Actuationen
dc.subjectWearableen
dc.subjectHaptic Feedbacken
dc.subjectArtificial Musclesen
dc.title利用定壓氣瓶改良人行走時的氣體能量儲存機制,並提升自我氣體能量儲存對於各種氣動應用之易用性zh_TW
dc.titleStepUp: Improving Pneumatic Energy Harvesting from Human Motion using Re-sizable Constant-pressure Air Storageen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭龍磻(Lung-Pan Cheng),詹力韋(Liwei Chan),余能豪(NENG-HAO YU),蔡欣叡(Hsin-Ruey Tsai)
dc.subject.keyword能量儲存,可穿戴,氣動應用,觸覺回饋,氣動人工肌肉,zh_TW
dc.subject.keywordEnergy Harvesting,Pneumatic Actuation,Wearable,Haptic Feedback,Artificial Muscles,en
dc.relation.page33
dc.identifier.doi10.6342/NTU202001212
dc.rights.note有償授權
dc.date.accepted2020-07-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-3006202015431600.pdf
  未授權公開取用
21.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved