請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61175
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張惠婷(Hui-Ting Chang) | |
dc.contributor.author | Sing-Huei Fu | en |
dc.contributor.author | 傅馨慧 | zh_TW |
dc.date.accessioned | 2021-06-16T10:51:05Z | - |
dc.date.available | 2018-08-27 | |
dc.date.copyright | 2013-08-27 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-09 | |
dc.identifier.citation | 劉棠瑞、廖日京 (1981) 樹木學上冊。台灣商務印書館,台北。pp. 426-427。
Alavez, S., M. C. Vantipalli, D. J. S. Zucker, I. M. Klang and G. J. Lithgow (2011) Amyloid-binding compounds maintain protein homeostasis during and extend lifespan. Nature 472: 226-230. Aliakbarian, B., D. Palmieri, A. A. Casazza, D. Palombo and P. Perego (2013) Antioxidant activity and biological evaluation of olive pomace extract. Natural Product Research 26 (24): 2280-2290. Beckman, K. B., B. N. Ames (1998) The free radical theory of aging matures. Physiological Reviews 78(2):547-581. Brown, M. K., J. L. Evans and Y. Luo (2006) Beneficial effects of natural antioxidants EGCG and α-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacology Biochemistry and Behavior 85: 620–628. Bursal E. and İ. Gulcinb (2011) Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food Research International 44: 1482-1489. Chlopicka, J., P. Paskoa, S. Gorinsteinb, A. Jedryas and P. Zagrodzki (2012) Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. Food Science and Technology 46: 548-555. Clokey, G. V. and L. A. Jacobson (1986) The autofluorescent “Lipofuscin granules” in the intestinal cells of Caenorhabditis elegans are secondary lysosomes. Mechanisms of Aging and Development 35: 79-94. Cook, N. C., and S. Samman (1996) Flavonoids- chemistry, metabolism, cardioprotective effects, and dietary sources. The Journal of Nutritional Biochemistry 7: 66-76. Datla, K. P., M. Christidou, W. W. Widmer, H. K. Rooprai and D. T. Dexter (2001) Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease. Neuroreport 12: 3871–3875. Dostal, V. and C. D. Link (2010) Assaying β-amyloid toxicity using a transgenic C. elegans model. Journal of Visualized Experiments 44: http://www.jove.com/details.php?id=2252, doi: 10.3791/2252. Ebrahimzadeh, M. A., F. Pourmorad and A. R. Bekhradnia (2008) Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. African Journal of Biotechnology 7 (18): 3188-3192. Ezaki-Furuichi, E., N. Gen-Ichiro, N. Itsuo, and H. Katsuya (1987) Affinity of procyanidins (Condensed Tannins) from the bark of Rhaphioleips umbellata for proteins. Agricultural and Biological Chemistry 51 (1): 115-120. Fazal, H., N. Ahmad and M. A. Khan (2011) Physico-chemical, phytochemical evaluation and dpph-scavenging antioxidant potential in medicinal plants used for herbal formulation in Pakistan. Pakistan Journal of Botany 43: 63-67. Ferreira, I. C. F. R., P. Baptista, M. Vilas-Boas, and L. Barros (2007) Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chemistry 100: 1511-1516. Fonte, V., D. R. Kipp, J. Yerg Ⅲ, D. Merin, M. Forrestal, E. Wagner, C. M. Robert and C. D. Link (2008) Suppression of in vivo β-amyloid peptide toxicity by overexpression of the HSP-16.2 small chaperone protein. The Journal of Biological Chemistry 283: 784-791. Gami, M.S. and C. A. Wolkow (2006) Studies of Caenorhabditis elegans DAF-2/insulin signaling reveal targets for pharmacological manipulation of lifespan. Aging Cell 5: 31–37. Gerstbrein, B., G. Stamatas, N. Kollias and M. Driscoll (2005) In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell 4: 127–137. Harman, D. (1956) Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology 2: 298–300. Heim, K. E., A. R. Tagliaferro, and D. J. Bobilya (2002) Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry 13: 572-584. Hekimi, S., J. Lapointe and Y. Wen (2011) Taking a ‘‘good’’ look at free radicals in the aging process. Trends in Cell Biology 21(10): 569-576. Johnson, T. E. (2003) Advantages and disadvantages of Caenorhabditis elegans for aging research. Experimental Gerontology 38: 1329-1332. Kampkotter, A., T. Pielarski, R. Rohrig, C. Timpel, Y. Chovolou, W. Watjen and R. Kahl (2007) The Ginkgo biloba extract EGb761 reduces stress sensitivity, ROS accumulation and expression of catalase and glutathione S-transferase 4 in Caenorhabditis elegans. Pharmacological Research 55: 139–147. Kampkotter, A., C. Timpel, R. F. Zurawski, S. Ruhl, Y. Chovolou, P. Proksch and W. Watjen (2008) Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comprartive Biochemistry and Physiology Part B 149: 314-323. Kessler M., G. Ubeaud, and L. Jung (2003) Anti- and pro-oxidant activity of rutin and quercetin derivatives. Journal of Pharmacy and Pharmacology 55: 131-142. Lander, H. M. (1997) An essential role for free radicals and derived species in signal transduction. The Journal of the Federation of American Societies for Experimental Biology 11: 118-124. Lin, C. H., H. S. Chang, C. H. Liao, T. H. Ou, I. S. Chen, and I. L. Tsai (2010) Anti-inflammatory biphenyls and dibenzofurans from Rhaphiolepis indica. Journal of Natural Products 73: 1628–1631. Lithgow, G.J., T. M White, D. A. Hinerfeld, and T. E. Johnson (1994) Thermotolerance of a long-lived mutant of Caenorhabditis elegans. The Journal of Gerontology Series B. 49: 270–276. Lithgow, G. J., T. M. White, S. Melov, and T. E. Johnson (1995) Thermotolerance and extended life span conferred by single-gene mutations and induced by thermal stress. Proceedings of the National Academy of Sciences USA 92: 7540–7544. Lithgow, G. J. and G. A. Walker (2002) Stress resistance as a determinate of C. elegans lifespan. Mechanisms of Aging and Development 123: 765-771. Locher, C. P., M. T. Burch, H. F. Mower, J. Berestecky, H. Davis, B. Van Poel, A. Lasure, D. A. Vanden Berghe, and A. J. Vlietinck (1995) Anti-microbial activity and anti-complement activity of extracts obtained from selected Hawaiian medicinal plants. Journal of Ethnopharmacology 49: 23-32. Lublin, A.L. and C. D. Link (2012) Alzheimer’s disease drug discovery: in vivo screening using Caenorhabditis elegans as a model for β-amyloid peptide-induced toxicity. Drug Discovery Today: Technologies 10: e115-e119. Luo, Y., J. V. Smith, V. Paramasivam, A. Burdick, K. J. Curry, J. P. Buford, I. Khan, W. J. Netzer, H. Xu. and P. Butko (2002) Inhibition of amyloid-beta aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proceedings of the National Academy of Sciences of the United States of America 99: 12197–12202. Mattson, M. P. (2008) Hormesis defined. Ageing Research Reviews 7: 1–7. Michaelson, D., D. Z. Korta, Y. Capua and E. J. A. Hubbard (2010) Insulin signaling promotes germLine proliferation in C. elegans. Development 137: 671-680. Nanjo, F., M. Mori, K. Goto, and Y. Hara (1999) Radical scavenging activity of tea catechins and their related compounds. Bioscience, Biotechnology, and Biochemistry 63 (9): 1621-1623. Nonaka, G-I., E. Ezakl, K. Hayshi, and I. Nishioka (1983) Flavanol glucosides from rhubarb and Rhaphiolepis umbellata. Phyrochemistry 22 (7): 1659-1661. Pallauf, K. and G. Rimbach (2013) Autophagy, polyphenols and healthy ageing. Aging Research Reviews 12: 237-252. Riddle, D. L. and P. S. Albert (1997) Genetic and Environmental Regulation of Dauer Larva Development. In C. elegans II. Cold Spring Harbor Laboratory Press. New York. pp. 739-768. Saito, M., H. Hosoyama, T. Ariga, S. Kataoka, and N. Yamaji (1998) Antiulcer activity of grape seed extract and procyanidins. Journal of Agricultural and Food Chemistry 46: 1460-1464. Saul, N., K. Pietsch, R. Menzel, S. R. Sturzenbaum and C. E. W. Steinberg (2009) Catechin induced longevity in C. elegans: From key regulator genes to disposable soma. Mechanisms of Ageing and Development 130: 477–486. Saul, N., K. Pietsch, R. Sturzenbaum and C. E. W. Steinberg (2010) The longevity effect of tannic acid in Caenorhabditis elegans:disposable soma meets hormesis. Journal of Gerontology 65(6): 626-635. Schaffitzel, E. and M. Hertweck (2006) Recent aging research in Caenorhabditis elegans. Experimental Gerontology 41: 557-563. Sohal, R. S. and R. Weindruch (1996) Oxidative stress, caloric restriction, and aging. Science 273(5271): 59-63. Spencer, J. P. E. (2008) Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance. Proceedings of the Nutrition Society 67: 238-252. Srivastsva, A., P. Greenspan, D. K. Hartle, J. L. Hargrove, R. Amarowicz, and R. B. Pegg (2010) Antioxidant and anti-inflammatory activities of poly phenolics from southeastern U.S. range blackberry cultivars. Journal of Agricultural and Food Chemistry 58: 6102-6109. Watanabe, K., S. M. Widyastuti, and F. Nonaka (1990) Two biphenyl compounds from Rhaphiolepis umbellata asits phytoalexin. Agricultural and Biological Chemistry 54 (7): 1861-1862. Welte, J.W., G. M. Barnes, W. F. Wieczorek, M. Tidwell and J. Parker (2001) Alcohol and gambling pathology among U.S. adults: Prevalence, demographic patterns and comorbidity. Journal of Studies on Alcohol 62: 706–712. Williams, R. J., J. P. E. Spencer and C. Rice-Evans (2004) Flavonoids: antioxidants or signalling molecules? Free Radical Biology and Medicine 36: 838–849. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61175 | - |
dc.description.abstract | 本研究評估厚葉石斑木 (Rhaphiolepis umbellata var. integerrima)葉子乙醇抽出物及四個可溶部的抗氧化活性,以及對秀麗隱桿線蟲生命週期與耐熱性的影響。在四個可溶部中,以乙酸乙酯可溶部與正丁醇可溶部含有較高的總酚類及總黃酮類含量;在還原力、DPPH自由基捕捉能力及TEAC總抗氧化能力方面,同樣以乙酸乙酯可溶部與正丁醇可溶部有較佳的抗氧化效果。
乙醇抽出物及可溶部對秀麗隱桿線蟲生命週期的影響,結果顯示乙醇抽出物及乙酸乙酯可溶部可以延長線蟲的壽命,即乙醇抽出物及乙酸乙酯可溶部有顯著的減緩老化能力;線蟲耐高溫試驗方面,乙酸乙酯可溶部與正己烷可溶部對於線蟲的高溫耐受性具有濃度依存的效果,又以正己烷可溶部的效果最佳,顯示正己烷可溶部可大幅增加線蟲對於高溫逆境的抵抗能力。在抑制線蟲體內脂褐素生成的評估方面,以正己烷可溶部及乙醇抽出物處理之線蟲在37℃下的體內脂褐素累積量最低,即正己烷可溶部及乙醇抽出物在致死溫度下,可有效減緩線蟲老化速率。在線蟲基因轉殖種CL4176 阿茲海默症β-Amyloid麻痺試驗中,乙醇抽出物、正己烷可溶部及乙酸乙酯可溶部可大幅減少線蟲麻痺率,皆低於正對照組,顯示乙醇抽出物、正己烷可溶部及乙酸乙酯可溶部可有效抑制阿茲海默症β-Amyloid的毒性。在抑制線蟲體內SOD-3 (Iron/manganese superoxide dismutase) 表現量方面,乙酸乙酯可溶部可以降低線蟲體內SOD-3的表現量,表示乙酸乙酯可溶部可有效降低線蟲體內氧化壓力的含量。綜合上述可知,厚葉石斑木葉子抽出物對秀麗隱桿線蟲具有多元的抗氧化及延緩老化之活性。 | zh_TW |
dc.description.abstract | The purposes of this study are to evaluate the antioxidant activicity, and the influences of leaf extract from Rhaphiolepis umbellata var. integerrima on lifespan and thermotolerance in Caenorhabditis elegans. In the antioxidant evaluation, results showed the n-butanol-soluble fraction and ethyl acetate-soluble fraction had higher total phenolic and flavonoid content than the other fractions. Moreover, n-butanol-soluble fraction and ethyl acetate-soluble fraction also had better performances in reducing power, DPPH free-radical scavenging activity and trolox equivalent antioxidant capacity.
In the lifespan assay of C. elegans, the ethanolic extract and ethyl acetate-soluble fraction could robustly extend the lifespan of C. elegans. It revealed the ethanolic extract and ethyl acetate-soluble fraction had the significant delay-aging activity. In thermotolerance assay, there was concentration-dependent effect of ethyl acetate-soluble fraction and n-hexane-soluble fraction on enhancing the thermotolerance of C. elegans. The n-hexane-soluble fraction had the highest improving effect. That means the n-hexane-soluble fraction could greatly improve the thermaltolerance of C. elegans at the heat stress. Furthermore, the C. elegans treated with n-hexane-soluble and ethanolic extract, respectively, could reduce the lipofuscin accumulation and retard the aging rate of C. elegans in lethal temperature of 37℃. In the β-amyloid paralysis assay of Alzheimer's disease with transgenic worms (CL4176), the ethanolic extract, n-hexane-soluble fraction and ethyl acetate-soluble fraction could notably reduce the paralysis rate of worms, which was even lower than the positive control. These results demonstrated the ethanolic extract, n-hexane-soluble fraction and ethyl acetate-soluble fraction could inhibit the toxicity of β-amyloid and had the potential for alleviating Alzheimer's disease. Additionally, the ethyl acetate-soluble fraction could reduce SOD-3 expression of C. elegans; the ethyl acetate-soluble fraction could reduce the oxidative stress in C. elegans. Based on the above results, the leaf extract of Rhaphiolepis umbellata var. integerrima had multiple antioxidant activities and delay-aging effect in C. elegans. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:51:05Z (GMT). No. of bitstreams: 1 ntu-102-R00625001-1.pdf: 3953032 bytes, checksum: 9b19212b0c07615351db9ae65a2a8d63 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 摘要 I
Abstract II 目錄 IV 表目錄 VIII 圖目錄 XI 壹、前言 1 貳、文獻回顧 2 一、老化與自由基老化理論 2 二、石斑木屬抽出成分及生物活性 3 (一) 石斑木屬植物天然物成分分析 4 1. 二苯騈呋喃類化合物 (Dibenzofurans) 4 2. 聯苯類化合物 (Biphenyls) 4 3. 黃酮類化合物 (Flavanoids) 及其衍生物 5 (二) 石斑木屬抽出物之天然物活性 7 1. 石斑木屬抽出物之抗發炎活性 7 2. 石斑木屬抽出物之抗真菌活性 8 3. 石斑木屬抽出物之抗氧化活性 10 4. 石斑木屬抽出物之抗潰瘍活性 13 5. 厚葉石斑木抽出物之抗病毒活性 16 三、秀麗隱桿線蟲 (Caenorhabditis elegans)的生態與作為模式生物的優缺點 17 (一) 線蟲型態………………………………………………………...………..………17 (二) 線蟲作為模式生物之優缺點 19 (三) 以線蟲為模式生物之天然物抗老化相關研究 21 1. 植物二次代謝物-槲皮素Quercetin之抗老化作用探討 21 2. EGCG及α-硫辛酸之抗老化作用探討 23 3. 銀杏標準抽出物EGb761之抗老化作用探討 24 4. 咖啡因 (Caffine) 減緩阿茲海默症Aβ麻痺毒性 25 参、材料與方法 27 一、試驗材料 27 (一) 試材………………………. …………………………………………….27 (二) 試驗藥品與溶劑 27 1. 藥品 27 2. 溶劑 27 二、試驗方法 27 (一)厚葉石斑木葉子抽出物萃取 27 1. 乙醇抽出物製備 27 2. 液相-液相分配 28 (二) 厚葉石斑木葉子抽出物抗氧化活性試驗 28 1. 總酚類含量測定 28 2. 總黃酮類含量測定 28 3. 還原力測定 29 4. DPPH自由基清除能力測定 29 5. 總抗氧化能力測定 30 (三) 線蟲培養………. 30 1. E. coli OP50培養 30 2. NGM agar plate製備 31 3. 野生種及基因轉殖線蟲培養 31 4. 線蟲蟲卵分離及同齡化 31 (四)秀麗隱桿線蟲耐熱性與抗老化試驗 32 1.線蟲生命週期試驗 32 2. 線蟲耐熱性試驗 32 3. 線蟲體內脂褐素累積試驗 32 4. 轉殖基因線蟲CL4176麻痺 (Paralysis) 試驗 33 5. 轉殖基因線蟲CF1553之SOD-3表現量測定 33 (五) 統計分析………… 33 肆、結果與討論 34 一、厚葉石斑木葉子抽出物及各可溶部收率 34 二、厚葉石斑木葉子抽出物及各可溶部的抗氧化活性評估 35 (一) 乙醇抽出物及各可溶部的總酚類含量 35 (二) 乙醇抽出物及各可溶部總黃酮類含量 37 (三) 乙醇抽出物及各可溶部之還原力 38 (四) 乙醇抽出物及各可溶部之DPPH自由基清除能力 39 (五) 乙醇抽出物及各可溶部之總抗氧化能力 41 三、厚葉石斑木葉子乙醇抽出物及各可溶部對線蟲生命週期之延長效果 42 四、抽出物及各可溶部對線蟲耐熱性的影響 49 五、乙醇抽出物及各可溶部對線蟲體內脂褐素累積量之影響 50 六、乙醇抽出物及各可溶部對CF1553 基因轉殖線蟲SOD-3表現之影響 53 七、乙醇抽出物及各可溶部對CL4176 基因轉殖線蟲麻痺率之影響 57 伍、結論 60 陸、參考文獻 61 | |
dc.language.iso | zh-TW | |
dc.title | 厚葉石斑木葉子抽出物對秀麗隱桿線蟲生命週期與耐熱性之影響 | zh_TW |
dc.title | Influences of Leaf Extract from Rhaphiolepis umbellata var. integerrima on Lifespan and Thermotolerance in Caenorhabditis elegans | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張上鎮(Shang-Tzen Chang),吳益群(Yi-Chun Wu),張美玲(Mei-Ling Chang),葉汀峰(Ting-Feng Yeh) | |
dc.subject.keyword | 抗氧化,秀麗隱桿線蟲,抽出物,生命週期,厚葉石斑木,耐熱性, | zh_TW |
dc.subject.keyword | Antioxidant,Caenorhabditis elegans,lifespan,Rhaphiolepis umbellata var. integerrima,thermotolerance, | en |
dc.relation.page | 65 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-12 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 3.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。