請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61174
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳智泓(Chyh-Hong Chen) | |
dc.contributor.author | Zong-Xing Lou | en |
dc.contributor.author | 樓宗興 | zh_TW |
dc.date.accessioned | 2021-06-16T10:51:01Z | - |
dc.date.available | 2014-08-14 | |
dc.date.copyright | 2013-08-14 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2008-12-16 | |
dc.identifier.citation | Chapter 1
1. Coene, W., et al., Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Physical Review Letters, 1992. 69(26): p. 3743-3746. 2. Reimer, L., Scanning Electron Microscopy. (Berlin: Springer-Verlag), 2000. 3. Bining, G. and H. Rohrer, Scanning tunneling microscopy. IBM Journal of Research and Development, 1986. 30: p. 4. 4. Binnig, G., C.F. Quate, and C. Gerber, Atomic Force Microscope. Physical Review Letters, 1986. 56(9): p. 930-933. 5. Betzig, E. and J.K. Trautman, NEAR-FIELD OPTICS - MICROSCOPY, SPECTROSCOPY, AND SURFACE MODIFICATION BEYOND THE DIFFRACTION LIMIT. Science, 1992. 257(5067): p. 189-195. 6. Lipson, A., S.G. Lipson, and H. Lipson, Optical Physics. 2011: Cambridge University Press, Cambridge. 7. Synge, E.H., Philosoph. Mag. Series, 1928. 7,6,35,: p. 356-362. 8. Hell, S.W. and J. Wichmann, BREAKING THE DIFFRACTION RESOLUTION LIMIT BY STIMULATED-EMISSION - STIMULATED-EMISSION-DEPLETION FLUORESCENCE MICROSCOPY. Optics Letters, 1994. 19(11): p. 780-782. 9. Willig, K.I., et al., STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 2006. 440(7086): p. 935-939. 10. Westphal, V., et al., Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science, 2008. 320(5873): p. 246-249. 11. Pendry, J.B., Negative Refraction Makes a Perfect Lens. Physical Review Letters, 2000. 85(18): p. 3966-3969. 12. Fang, N., et al., Sub–Diffraction-Limited Optical Imaging with a Silver Superlens. Science, 2005. 308(5721): p. 534-537. 13. Taubner, T., et al., Near-Field Microscopy Through a SiC Superlens. Science, 2006. 313(5793): p. 1595. 14. Zhang, X. and Z. Liu, Superlenses to overcome the diffraction limit. Nat Mater, 2008. 7(6): p. 435. 15. Jacob, Z., L.V. Alekseyev, and E. Narimanov, Optical hyperlens: Far-field imaging beyond the diffraction limit. Optics Express, 2006. 14(18): p. 8247-8256. 16. Liu, Z., et al., Far-field optical superlens. Nano Letters, 2007. 7(2): p. 403-408. 17. Smolyaninov, I.I., Y.-J. Hung, and C.C. Davis, Magnifying superlens in the visible frequency range. Science, 2007. 315(5819): p. 1699-1701. 18. Rho, J., et al., Spherical hyperlens for two dimensional sub-diffractional imaging at visible frequencies. Nature Communications, 2010. 1. 19. Liu, Z., et al., Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007. 315(5819): p. 1686-1686. 20. Lee, H., et al., Development of optical hyperlens for imaging below the diffraction limit. Opt. Express, 2007. 15(24): p. 15886-15891. 21. Xiong, Y., Z. Liu, and X. Zhang, A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Applied Physics Letters, 2009. 94(20): p. 203108-203108-3. 22. Huang, X., et al., Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 2008. 23(3): p. 217-228. 23. Lee, J.Y., et al., Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature, 2009. 460(7254): p. 498-501. 24. Mason, D.R., M.V. Jouravlev, and K.S. Kim, Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses. Optics Letters, 2010. 35(12): p. 2007-2009. 25. Sanchez, E.J., L. Novotny, and X.S. Xie, Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips. Physical Review Letters, 1999. 82(20): p. 4014-4017. 26. Bailey, B., et al., ENHANCEMENT OF AXIAL RESOLUTION IN FLUORESCENCE MICROSCOPY BY STANDING-WAVE EXCITATION. Nature, 1993. 366(6450): p. 44-48. 27. Gustafsson, M.G.L., Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(37): p. 13081-13086. 28. Esa, A., et al., Three‐dimensional spectral precision distance microscopy of chromatin nanostructures after triple‐colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome. Journal of microscopy, 2000. 199(2): p. 96-105. 29. Rust, M.J., M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature methods, 2006. 3(10): p. 793-796. 30. Rogers, E.T.F., et al., A super-oscillatory lens optical microscope for subwavelength imaging. Nature Materials, 2012. 11(5): p. 432-435. 31. Blaikie, R.J., Perfect imaging without refraction? New Journal of Physics, 2011. 13. 32. van Putten, E.G., et al., Scattering Lens Resolves Sub-100 nm Structures with Visible Light. Physical Review Letters, 2011. 106(19). 33. Kapitonov, A.M. and V.N. Astratov, Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities. Optics Letters, 2007. 32(4): p. 409-411. 34. Yang, S. and V.N. Astratov, Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere. Applied Physics Letters, 2008. 92(26). 35. Yi, K.J., et al., Enhanced Raman scattering by self-assembled silica spherical microparticles. Journal of Applied Physics, 2007. 101(6). 36. Lecler, S., et al., Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres. Optics Express, 2007. 15(8): p. 4935-4942. 37. Wu, W., et al., A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars. Nanotechnology, 2007. 18(48). 38. McLeod, E. and C.B. Arnold, Subwavelength direct-write nanopatterning using optically trapped microspheres. Nature Nanotechnology, 2008. 3(7): p. 413-417. 39. Li, X., et al., Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. Optics Express, 2005. 13(2): p. 526-533. 40. Gerlach, M., Y.P. Rakovich, and J.F. Donegan, Nanojets and directional emission in symmetric photonic molecules. Optics Express, 2007. 15(25): p. 17343-17350. 41. Wang, Z., et al., Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nature Communications, 2011. 2: p. 218. 42. Chen, Z.G., A. Taflove, and V. Backman, Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Optics Express, 2004. 12(7): p. 1214-1220. 43. Hao, X., et al., Microsphere based microscope with optical super-resolution capability. Applied Physics Letters, 2011. 99(20). 44. Hao, X., et al., Hydrophilic microsphere based mesoscopic-lens microscope (MMM). Optics Communications, 2012. 285(20): p. 4130-4133. 45. Darafsheh, A., et al., Optical super-resolution by high-index liquid-immersed microspheres. Applied Physics Letters, 2012. 101(14). 46. Vlad, A., I. Huynen, and S. Melinte, Wavelength-scale lens microscopy via thermal reshaping of colloidal particles. Nanotechnology, 2012. 23(28). 47. Chang, Y.-K., et al., Universal scaling of plasmonic refractive index sensors. Optics Express, 2013. 21(2): p. 1804-1811. 48. Lee, V., Probing the limits of one-dimensional heat transfer phenomena. Master thesis, Department of Physics, National Taiwan University 2012. Chapter 2 1. Wang, Z., et al., Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nature Communications, 2011. 2: p. 218. 2. Hao, X., et al., Microsphere based microscope with optical super-resolution capability. Applied Physics Letters, 2011. 99(20). 3. Darafsheh, A., et al., Optical super-resolution by high-index liquid-immersed microspheres. Applied Physics Letters, 2012. 101(14). 4. Hao, X., et al., Hydrophilic microsphere based mesoscopic-lens microscope (MMM). Optics Communications, 2012. 285(20): p. 4130-4133. 5. Lee, J.Y., et al., Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature, 2009. 460(7254): p. 498-501. 6. Ran Ye, Y.-H.Y., Hui Feng Ma, Jun Ma, Bin Wang, Jie Yao, Shuai Liu, Lingling Cao, Huanhuan Xu, and Jia-Yu Zhang,, Experimental far-field imaging properties of a ~5-μm diameter spherical lens. Optical Letters, 2013. 38: p. 1829-1831. 7. Vlad, A., I. Huynen, and S. Melinte, Wavelength-scale lens microscopy via thermal reshaping of colloidal particles. Nanotechnology, 2012. 23(28). 8. Wang, S.Y., H.J. Zhang, and D.X. Zhang, Location-free optical microscopic imaging method with high-resolution based on microsphere superlenses. Acta Physica Sinica, 2013. 62(3). Chapter 3 1. Huang, S.M., et al., Theoretical and experimental investigation of the near field under ordered silica spheres on substrate. Applied Physics A, 2009. 96(2): p. 459-466. 2. Pikulin, A., et al., Effects of spherical mode coupling on near-field focusing by clusters of dielectric microspheres. Optics Express, 2012. 20(8): p. 9052-9057. 3. Wang, Z.B., et al., Optical Near-field Interaction between Neighbouring Micro/Nano-Particles. Journal of Laser Micro Nanoengineering, 2008. 3(1): p. 14-18. 4. Potton, R.J., Reciprocity in optics. Reports on Progress in Physics, 2004. 67(5): p. 717-754. 5. Chi-Chih Ho, P.-Y.C., Keng-Hui Lin, Wen-Tau Juan, Wei-Li Lee, Fabrication of Monolayer of Polymer/Nanospheres Hybrid at a Water-Air Interface. Applied Materials & Interfaces, 2011. 3: p. 204. 6. Fujimura, T., et al., Morphology and photonic band structure modification of polystyrene particle layers by reactive ion etching. Applied Physics Letters, 2001. 78(11): p. 1478-1480. 7. Yan, X., et al., Fabrication of non-close-packed arrays of colloidal spheres by soft lithography. Journal of the American Chemical Society, 2005. 127(21): p. 7688-7689. 8. Jiang, P., et al., Two-dimensional nonclose-packed colloidal crystals formed by spincoating. Applied Physics Letters, 2006. 89(1): p. 011908-011908-3. 9. Ran Ye, Y.-H.Y., Hui Feng Ma, Jun Ma, Bin Wang, Jie Yao, Shuai Liu, Lingling Cao, Huanhuan Xu, and Jia-Yu Zhang,, Experimental far-field imaging properties of a ~5-μm diameter spherical lens. Optical Letters, 2013. 38: p. 1829-1831. 10. Dudek, T.J. and J.J. Lohr, Glass transition temperatures of poly (methyl methacrylate) plasticized with low concentrations of monomer and diethyl phthalate. Journal of Applied Polymer Science, 1965. 9(12): p. 3795-3818. 11. Podgrabinski, T., et al., Characterization of polystyrene and doped polymethylmethacrylate thin layers. Journal of Materials Science: Materials in Electronics, 2005. 16(11-12): p. 761-765. 12. Podgrabinski, T., et al., Dielectric properties of doped polystyrene and polymethylmethacrylate. Journal of Materials Science: Materials in Electronics, 2006. 17(11): p. 871-875. 13. Viratyaporn, W. and R.L. Lehman, Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization. Journal of thermal analysis and calorimetry, 2011. 103(1): p. 267-273. 14. Darafsheh, A., et al., Optical super-resolution by high-index liquid-immersed microspheres. Applied Physics Letters, 2012. 101(14). 15. Hao, X., et al., Hydrophilic microsphere based mesoscopic-lens microscope (MMM). Optics Communications, 2012. 285(20): p. 4130-4133. 16. Hao, X., et al., Microsphere based microscope with optical super-resolution capability. Applied Physics Letters, 2011. 99(20). 17. Venkatesh, S., P. Jiang, and B. Jiang, Generalized fabrication of two-dimensional non-close-packed colloidal crystals. Langmuir, 2007. 23(15): p. 8231-8235. Chapter 4 1. Mie, G., Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen. Annalen der physik, 1908. 330(3): p. 377-445. 2. Lock, J.A. and G. Gouesbet, Generalized Lorenz–Mie theory and applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009. 110(11): p. 800-807. 3. Hafner, C., The Generalized Multiple Multipole Rechnique for Computational Electromagnetics. 1990, Boston: Artech. 4. Martin, O.J., C. Girard, and A. Dereux, Generalized field propagator for electromagnetic scattering and light confinement. Physical review letters, 1995. 74(4): p. 526-529. 5. Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method. 3rd ed. 2005, Artech House. 6. Weiland, T., Time domain electromagnetic field computation with finite difference methods. International Journal of Numerical Modelling-Electronic Networks Devices and Fields, 1996. 9(4): p. 295-320. 7. Rienen, U.V., Numerical Methods in Computational Electrodymanics; Linear Systems in Practical Applications. 2001. 8. http://www.cst.com/2010/. 9. http://www.comsol.com/products/4.2a/. 10. Chen, Z.G., A. Taflove, and V. Backman, Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Optics Express, 2004. 12(7): p. 1214-1220. 11. Li, X., et al., Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. Opt. Express, 2005. 13(2): p. 526-533. 12. Heifetz, A., et al., Photonic Nanojets. Journal of Computational and Theoretical Nanoscience, 2009. 6(9): p. 1979-1992. 13. Luk‘yanchuk, B., et al., Three-dimensional effects in dry laser cleaning. Applied Physics A, 2003. 77(2): p. 209-215. 14. Wang, Z., et al., Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nature Communications, 2011. 2: p. 218. 15. Itagi, A. and W. Challener, Optics of photonic nanojets. JOSA A, 2005. 22(12): p. 2847-2858. 16. Devilez, A., et al., Spectral analysis of three-dimensional photonic jets. Optics express, 2008. 16(18): p. 14200-14212. Chapter 5 1. Chang, Y.-K., et al., Universal scaling of plasmonic refractive index sensors. Optics express, 2013. 21(2): p. 1804-1811. 2. Lee, V., et al., Divergent and Ultrahigh Thermal Conductivity in Millimeter-long Nanotubes. To be published, 2012. 3. Hone, J., et al., Thermal conductivity of single-walled carbon nanotubes. Physical Review B, 1999. 59(4): p. R2514. 4. Kim, P., et al., Thermal transport measurements of individual multiwalled nanotubes. Physical review letters, 2001. 87(21): p. 215502. 5. Lindsay, L., D. Broido, and N. Mingo, Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules. Physical Review B, 2009. 80(12): p. 125407. 6. Mingo, N. and D. Broido, Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”. Nano Letters, 2005. 5(7): p. 1221-1225. 7. Yu, C., et al., Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Letters, 2005. 5(9): p. 1842-1846. 8. Lee, V., Probing the limits of one-dimensional heat transfer phenomena, Master thesis, in Department of Physics2012, National Taiwan University. 9. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007. 58: p. 267-297. 10. Mayer, K.M. and J.H. Hafner, Localized surface plasmon resonance sensors. Chemical reviews, 2011. 111(6): p. 3828-3857. 11. Petryayeva, E. and U.J. Krull, Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Analytica chimica acta, 2011. 706(1): p. 8-24. 12. Chang, Y.-K., Universal scaling of plasmonic sensors and their unusual properties, Master thesis in Physics Department2013, National Taiwan University. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61174 | - |
dc.description.abstract | 可見光波段的超解析(super-resolution)影像一直是科學家努力在研究的課題。許多生物及醫學上的樣本,需要可見光波段才能觀察到其一般行為。但許多樣本的表現和特徵的觀察同時又需要超越可見光繞射極限的解析度。在過往的十幾年內,科學家不斷嘗試利用各種精確控制的奈米結構來放大及傳遞消逝波(Evanescent wave) 到遠(Far-field),或是利用特殊的掃描方式來重組影像以達到超解析的需求。雖然這些方法已經在實驗上有很顯著的成效,但其結構的複雜,製程上的高難度以及耗時的擷取影像程序卻成為其在應用上的致命傷。近年來,微米球白光超解析現象的發現讓人們得以用最簡單製程和直接觀察的方式以可見光的媒介來取得超解析影像,此發現無疑是光學領域的大突破。在我們的研究中,嘗試著藉由一些創意上的改良,使的微米球成像技術可以更加穩定,甚至可以自由地將這樣的超解析鏡頭轉移到各種我們想觀察的樣本上。另外我們也用電腦模擬來探討微米球的成像性質並與實驗比對,希望能更進一步了解其成像的基本機制。 | zh_TW |
dc.description.abstract | It has been a long time since scientists put their efforts on obtaining super-resolution images for biological or medical applications. In the past few decades, scientists tried to magnify and transmit evanescent waves to far field by fabricating novel nanostructures or utilizing special scanning techniques to recombine images to achieve the super-resolution condition. Although significant advancements have been demonstrated, the sophisticated structures, difficulty in manufacturing, and time consuming process in obtaining images have hindered the widespread applications. Recently, the discovery of super-resolution under white-light illumination via microsphere lenses have helped us to achieve super-resolution images by direct observation via visible light without complex fabrication processes, making a great breakthrough in the field of optical imaging. In the thesis I try to improve the stability of the image quality by non-volatile polymer semi-immersion mechanism. Furthermore, I succeed in transferring microsphere superlenses to various kinds of samples of interests. Besides I also employ computer simulations to investigate the imaging characteristics of microspheres and try to have better understanding of the mechanism on microsphere-based super-resolution. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:51:01Z (GMT). No. of bitstreams: 1 ntu-102-R98222002-1.pdf: 7207404 bytes, checksum: 6d1e9afa2fae8a493bd3fccd2dfeadba (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員審定書
致謝 ......................................................I 摘要......................................................II Abstract.................................................III Contents...................................................V List of figures.........................................VIII List of tables............................................XV Chapter 1 Introduction.....................................1 1-1 Overcoming the diffraction limit in conventional optical microscopy.........................................1 1-2 Microsphere nanoscope..................................7 1-3 About our works.......................................11 References................................................12 Chapter 2 Experiments on single microlens.................15 2-1 Requirements for super-resolution microspheres........15 2-2 Approaching longtime imaging stability................20 2-3 Wavelength dependent image resolution.................23 2-4 Imaging properties of Borosilicate microspheres.......24 2-5 Super-resolution imaging in whole immersion condition by low refractive index microspheres..................26 2-6 Immersion induced microspheres diameter enlargement 27 2-7 Continuous wave laser scanning and resolution estimations...........................................28 2-8 Giant microspheres super-resolution imaging...........31 2-9 Enigma of the resolution judgment.....................33 References................................................44 Chapter 3 Fabrication of multi-transferable super-resolution lens arrays....................45 3-1 Multi-microspheres imaging properties.................45 3-2 Large-area multi-transferable super-resolution lenses free of immersion.....................................51 3-3 Cu grid assisted microsphere lens arrays..............59 3-4 Towards template free periodic ncp array super- resolution lenses.....................................73 3-5 Future works on fabricating ncp array superlens thin film..................................................80 3-6 Post script: Recent Progress..........................82 References................................................83 Chapter 4 Studying microsphere super-resolution by simulations.....................................85 4-1 Simulation structures and methods.....................85 4-2 Photonic nanojets and its relations to super- resolution............................................87 4-3 Imaging objects with subwavelength feature............96 References................................................99 Chapter 5 Nanofabrication of 1D heat transfer device and plasmonic refractive index sensors.............100 5-1 One dimensional heat transfer device.................100 5-2 Plasmonic refractive index sensors...................104 References...............................................109 | |
dc.language.iso | en | |
dc.title | 介電質微米球透鏡之超解析成像性質研究 | zh_TW |
dc.title | Super-Resolution Imaging through Dielectric Microspheres | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 張之威(Chih-Wei Chang) | |
dc.contributor.oralexamcommittee | 李偉立(Wei-Li Lee) | |
dc.subject.keyword | 消逝波,遠場,超解析,光子奈米噴射流,微米球,超鏡頭,繞射極限, | zh_TW |
dc.subject.keyword | evanescent wave,far field,super-resolution,photonic nanoje,microsphere,superlens,diffraction limit, | en |
dc.relation.page | 126 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-12 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 7.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。