Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6116
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉進賢
dc.contributor.authorYu-Chen Chenen
dc.contributor.author陳又榛zh_TW
dc.date.accessioned2021-05-16T16:21:10Z-
dc.date.available2014-08-14
dc.date.available2021-05-16T16:21:10Z-
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-07-30
dc.identifier.citationAlves, C. J. S. (2009). 'On the choice of source points in the method of fundamental solutions.' Engineering Analysis with Boundary Elements 33(12): 1348-1361.

[2]. Bauer, F. L. (1963). 'Optimally scaled matrices.' Numerische Mathematik 5(1): 73-87.

[3]. Bauer, F. L. (1969). 'Remarks on optimally scaled matrices.' Numerische Mathematik 13(1): 1-3.

[4]. Benzi, M. (2002). 'Preconditioning Techniques for Large Linear Systems: A Survey.' Journal of Computational Physics 182(2): 418-477.

[5]. Benzi, M., C. Meyer, M. Tuma. (1996). 'A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method.' SIAM Journal on Scientific Computing 17(5): 1135-1149.

[6]. Benzi, M. and A. Wathen (2008). 'Some Preconditioning Techniques for Saddle Point Problems.' Model Order Reduction: Theory, Research Aspects and Applications. W. A. Schilders, H. Vorst and J. Rommes, Springer Berlin Heidelberg. 13: 195-211.

[7]. Wei, T., Y. C. Hon, Leevan Ling. (2007). 'Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators.' Engineering Analysis with Boundary Elements 31(4): 373-385.

[8]. Chen, C.S., H.A. Cho, M.A. Golberg (2006). 'Some comments on the ill-conditioning of the method of fundamental solutions.' Engineering Analysis with Boundary Elements30(5): 405-410.

[9]. Concus, P., G. Golub, G. Meurant. (1985). 'Block Preconditioning for the Conjugate Gradient Method.' SIAM Journal on Scientific and Statistical Computing6(1): 220-252.

[10]. Fairweather, G. and A. Karageorghis (1998). 'The method of fundamental solutions for elliptic boundary value problems.' Advances in Computational Mathematics9(1-2): 69-95.

[11]. Gautschi, W. (2011). 'Optimally scaled and optimally conditioned Vandermonde and Vandermonde-like matrices.' BIT Numerical Mathematics51(1): 103-125.

[12]. Hon, Y. C. and M. LI (2009). 'A discrepancy principle for the source points location in using the MFS for solving the BHCP.' International Journal of Computational Methods06(02): 181-197.

[13]. Kubo, S. (1988). 'Inverse Problems Related to the Mechanics and Fracture of Solids and Structures.' JSME international journal. Ser. 1, Solid mechanics, strength of materials31(2): 157-166.

[14]. Liu, C.-S. (2008). 'A highly accurate MCTM for direct and inverse problems of biharmonic equation in arbitrary plane domains.' CMES: Computer Modeling in Engineering & Sciences30(2): 65-76.

[15]. Liu, C.-S. (2008). 'Improving the Ill-conditioning of the Method of Fundamental Solutions for 2D Laplace Equation.' CMES: Computer Modeling in Engineering & Sciences 28(2): 77-93.

[16]. Liu, C.-S. (2011). 'The method of fundamental solutions for solving the backward heat conduction problem with conditioning by a new post-conditioner.' Numerical Heat Transfer, Part B: Fundamentals 60(1): 57-72.

[17]. Liu, C.-S. (2012). 'An equilibrated method of fundamental solutions to choose the best source points for the Laplace equation.' Engineering Analysis with Boundary Elements 36(8): 1235-1245.

[18]. Liu, C.-S. (2012). 'A globally optimal iterative algorithm to solve an ill-posed linear system.' CMES: Computer Modeling in Engineering & Sciences 84(4): 383.

[19]. Liu, C.-S. (2012). 'Optimally generalized regularization methods for solving linear inverse problems.' CMC:Computers Materials and Continua 29(2): 103.

[20]. Liu, C.-S. (2012). 'Optimally scaled vector regularization method to solve ill-posed linear problems.' Applied Mathematics and Computation 218(21): 10602-10616.

[21]. Liu, C.-S. (2013). 'A Dynamical Tikhonov Regularization for Solving Ill-posed Linear Algebraic Systems.' Acta Applicandae Mathematicae 123(1): 285-307.

[22]. Liu, C.S., H.K. Hong, S.N. Atluri (2010). 'Novel algorithms based on the conjugate gradient method for inverting ill-conditioned matrices, and a new regularization method to solve ill-posed linear systems.' CMES:Computer Modeling in Engineering and Sciences 60(3): 279.

[23]. Sluis, A. (1969). 'Condition numbers and equilibration of matrices.' Numerische Mathematik 14(1): 14-23.

[24]. Sluis, A. (1970). 'Condition, equilibration and pivoting in linear algebraic systems.' Numerische Mathematik 15(1): 74-86.

[25]. Vajargah, B. F. and M. Moradi (2012). 'Diagonal Scaling of Ill-Conditioned Matrixes by Genetic Algorithm.' Journal of Applied Mathematics, Statistics and Informatics 8(1): 49-53.

[26]. Watson, G. (1991). 'An algorithm for optimal ℓ2 scaling of matrices.' IMA Journal of Numerical Analysis 11(4): 481-492.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6116-
dc.description.abstract文之想法乃藉由簡易求得之調整器來改善病態線性系統 中之給定矩陣 對於微小數值改變之敏感性,以達到數值解準確之結果,文章中將調整器分成兩類單側調整器以及雙側調整器,而任一種調整器當中又再因作用位置亦或是作用時機之差異又各有兩個調整器。
共軛梯度法於輕度病態之問題所求得之數值解,收斂速度快且準確性佳,因此本研究藉由不同調整器改善矩陣之病態程度,再使用共軛梯度法進行求解,由於目前並無任一調整器能夠適用於所有問題,本研究將藉由三個不同之正反算問題,來進行數值解比較,其中反算問題如反算柯西問題、反向熱傳導問題,正算問題則為線性希爾伯特問題。本研究藉由無網格法當中之基本解法將連續方程轉為線性方程以便於利用共軛梯度法求解。
不同調整器在面對正反算問題有不同之改善效果,於數值解誤差之改善或收斂速度之提升,可預期地,大部分之數值結果會較未經過任何調整器處理過就使用共軛梯度法進行求解之結果來得好。
zh_TW
dc.description.abstractIn order to get the accurate numerical solutions of ill-posed linear systems we propose an equilibrated condtioning method to reduce the condition number of the given matrix by a simple idea. In the thesis we proposed two kinds of the equilibrated conditioners; one-side equilibrated conditioner and two-side equilibrated conditioner, and for each kind we consider the different acting position or acting timing to generate two conditioners.
The conjugate gradient method(CGM) can get very well solution when the condition number is small; therefore, we try to use the different kind of conditioner to refine the ill-condition of the given matrix, and then use CGM to get the solution. We know that there is not any conditioner which is suitable for every problem, and we will use total three problems which include two inverse problems and one direct problem to verify our proposed methods, where Cauchy problem, Backward heat conduction problem and linear Hilbert problem to test them. We will discrete the problem into the linear system by using the method of fundamental solutions, which is one kind of meshless methods.
Different conditioners when facing various problems which can obtain different effects, decreasing the numerical error or accelerating the convergence speed.
Prospectively, most given matrix which is refined by conditioner which obtain the better numerical results than original one.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:21:10Z (GMT). No. of bitstreams: 1
ntu-102-R00521240-1.pdf: 12810267 bytes, checksum: 3ad08f78576b20bfe6dc372db62e5643 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口委審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究動機 3
1.4 論文結構 4
第二章 基礎理論 6
2.1 引言 6
2.2 數值穩定性 6
2.2.1 適定性問題(Well-posed problem) 6
2.2.2 病態問題(Ill-posed Problem) 7
2.3 條件數(Condition Number) 8
2.4 正算、反算問題(Direct and Inverse Problem) 9
2.5 無網格法(Meshless Method) 10
2.5.1 基本解法 (The Method of Fundamental Solutions, MFS) 11
2.6 共軛梯度法(Conjugate GradientMethod,CGM) 12
2.6.1 牛頓法(Newton’s Method) 13
2.6.2 最速下降法(The Steepest Descent Method) 14
2.6.3 共軛梯度法之演算法(Algorithms of CGM) 15
2.6.4 預處理共軛梯度法(Preconditioned CGM) 17
2.6.5 矩陣之共軛梯度法(MCGM) 17
第三章 單側等模調整器之研究 23
3.1 前調整器(Preconditioning CGM, PreCGM) 23
3.2 後調整器(Post-conditioning CGM, PostCGM) 25
3.3 數值算例 27
3.3.1 柯西問題(Inverse Cauchy Problem for Laplace equation) 28
3.3.2 反向熱傳導問題(Backward Heat Conduction Problem) 30
3.3.3 Linear Hilbert Problem 33
3.3.4 小結 37
第四章 雙側等模調整器之研究 54
4.1 雙邊調整器(Two-side conditioning CGM, TsCGM) 55
4.2 前側雙邊調整器(Pre-conditioning CGM,PrCGM) 56
4.3 數值算例 57
4.3.1 反算柯西問題 57
4.3.2 反向熱傳導問題 61
4.3.3 Linear Hilbert Problem 63
4.4 調整器之比較 65
4.5 小結 66
第五章 結論 83
參考文獻 84
dc.language.isozh-TW
dc.title利用等模調整器求解病態線性系統之研究zh_TW
dc.titleThe study of solving the ill-posed linear problem by using the equilibrated conditioning methoden
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張建仁,陳永為
dc.subject.keyword病態線性系統,線性反算問題,共軛梯度法,基本解法,等模調整器,雙側調整器,zh_TW
dc.subject.keywordIll-posed linear problem,Inverse problem,Conjugate gradient method,The method of fundamental solution,Equilibrated conditioner,Two-side conditioner,en
dc.relation.page86
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf12.51 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved