請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61149
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林峯輝(Feng-Huei Lin) | |
dc.contributor.author | Bo-Han Chu | en |
dc.contributor.author | 朱柏翰 | zh_TW |
dc.date.accessioned | 2021-06-16T10:49:27Z | - |
dc.date.available | 2020-07-20 | |
dc.date.copyright | 2020-07-20 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-02 | |
dc.identifier.citation | [1] S. Sharifi, S.K. Bulstra, D.W. Grijpma, R.J.J.o.t.e. Kuijer, r. medicine, Treatment of the degenerated intervertebral disc; closure, repair and regeneration of the annulus fibrosus, 9(10) (2015) 1120-1132. [2] S.R. Sloan Jr, M. Lintz, I. Hussain, R. Hartl, L.J.J.T.E.P.B.R. Bonassar, Biologic annulus fibrosus repair: a review of preclinical in vivo investigations, 24(3) (2018) 179-190. [3] KAPANDJI I.A, physiologie articulaire Tome 3 Maloine – 1975 http://www.osteopatheaparis.fr/page48/page16/page26/page26.html [4] K.M. Cheung, J. Karppinen, D. Chan, D.W. Ho, Y.-Q. Song, P. Sham, K.S. Cheah, J.C. Leong, K.D.J.S. Luk, Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals, 34(9) (2009) 934-940. [5] K. Singh, K. Masuda, E.J.A. Thonar, H.S. An, G.J.S. Cs-Szabo, Age-related changes in the extracellular matrix of nucleus pulposus and anulus fibrosus of human intervertebral disc, 34(1) (2009) 10. [6] 2012 Nucleus Medical Art/Doctor Stock https://doctorstock.photoshelter.com/image/I0000ZDbCv9TY6Sw [7] L. Jin, A.L. Shimmer, X.J.E.s.j. Li, The challenge and advancement of annulus fibrosus tissue engineering, 22(5) (2013) 1090-1100. [8] Y. Moriguchi, M. Alimi, T. Khair, G. Manolarakis, C. Berlin, L.J. Bonassar, R.J.G.s.j. Härtl, Biological treatment approaches for degenerative disk disease: a literature review of in vivo animal and clinical data, 6(05) (2016) 497-518. [9] M.J. McGirt, S. Eustacchio, P. Varga, M. Vilendecic, M. Trummer, M. Gorensek, D. Ledic, E.J.J.S. Carragee, A prospective cohort study of close interval computed tomography and magnetic resonance imaging after primary lumbar discectomy: factors associated with recurrent disc herniation and disc height loss, 34(19) (2009) 2044-2051. [10] Y.-H. Wang, T.-F. Kuo, J.-L.J.E.S.J. Wang, The implantation of non-cell-based materials to prevent the recurrent disc herniation: an in vivo porcine model using quantitative discomanometry examination, 16(7) (2007) 1021-1027. [11] J.L. Bron, A.J. van der Veen, M.N. Helder, B.J. van Royen, T.H.J.E.S.J. Smit, Biomechanical and in vivo evaluation of experimental closure devices of the annulus fibrosus designed for a goat nucleus replacement model, 19(8) (2010) 1347-1355. [12] C.-J. Chiang, C.-K. Cheng, J.-S. Sun, C.-J. Liao, Y.-H. Wang, Y.-H.J.S. Tsuang, The effect of a new anular repair after discectomy in intervertebral disc degeneration: an experimental study using a porcine spine model, 36(10) (2011) 761-769. [13] A.H. Bateman, C. Balkovec, M.K. Akens, A.H. Chan, R.D. Harrison, W. Oakden, A.J. Yee, S.M.J.T.S.J. McGill, Closure of the annulus fibrosus of the intervertebral disc using a novel suture application device—in vivo porcine and ex vivo biomechanical evaluation, 16(7) (2016) 889-895. [14] C. Liu, C. Zhu, J. Li, P. Zhou, M. Chen, H. Yang, B.J.B.r. Li, The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells, 3 (2015) 15012. [15] A.A. Hegewald, F. Medved, D. Feng, C. Tsagogiorgas, A. Beierfuß, G.A.K. Schindler, M. Trunk, C. Kaps, D.S. Mern, C.J.J.o.t.e. Thomé, r. medicine, Enhancing tissue repair in annulus fibrosus defects of the intervertebral disc: analysis of a bio‐integrative annulus implant in an in‐vivo ovine model, 9(4) (2015) 405-414. [16] R. Langer, J.P. Vacanti, C.A. Vacanti, A. Atala, L.E. Freed, G.J.T.e. Vunjak-Novakovic, Tissue engineering: biomedical applications, 1(2) (1995) 151-161. [17] O. Hakimi, D.P. Knight, F. Vollrath, P.J.C.P.B.E. Vadgama, Spider and mulberry silkworm silks as compatible biomaterials, 38(3) (2007) 324-337. [18] T. Dyakonov, C.H. Yang, D. Bush, S. Gosangari, S. Majuru, A.J.J.o.d.d. Fatmi, Design and characterization of a silk-fibroin-based drug delivery platform using naproxen as a model drug, 2012 (2012). [19] B.J. Allardyce, R. Rajkhowa, R.J. Dilley, M.D. Atlas, J. Kaur, X.J.T.R.J. Wang, The impact of degumming conditions on the properties of silk films for biomedical applications, 86(3) (2016) 275-287. [20] Y. Qi, H. Wang, K. Wei, Y. Yang, R.-Y. Zheng, I. Kim, K.-Q.J.I.j.o.m.s. Zhang, A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures, 18(3) (2017) 237. [21] K.-C. Yen, C.-Y. Chen, J.-Y. Huang, W.-T. Kuo, F.-H.J.J.o.M.C.B. Lin, Fabrication of keratin/fibroin membranes by electrospinning for vascular tissue engineering, 4(2) (2016) 237-244. [22] 27.Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL, Silk-based biomaterials, Biomaterials 2003; 24: 401-416. [23] Primary structure of fibroin.http://www.wikiwand.com/en/Fibroin [24] Silk beta-sheets, Biofoundations, Retrieved July 26, 2017,http://biofoundations.org/brain-factor7-bf-7-from-silkworms-enhancing-brain-health [25] V. Volkov, A.V. Ferreira, A.J.M.M. Cavaco‐Paulo, Engineering, On the Routines of Wild‐Type Silk Fibroin Processing Toward Silk‐Inspired Materials: A Review, 300(12) (2015) 1199-1216. [26] Y. Tabata, Y.J.A.d.d.r. Ikada, Protein release from gelatin matrices, 31(3) (1998) 287-301. [27] H.-W. Kang, Y. Tabata, Y.J.B. Ikada, Fabrication of porous gelatin scaffolds for tissue engineering, 20(14) (1999) 1339-1344. [28] D. Olsen, C. Yang, M. Bodo, R. Chang, S. Leigh, J. Baez, D. Carmichael, M. Perälä, E.-R. Hämäläinen, M.J.A.d.d.r. Jarvinen, Recombinant collagen and gelatin for drug delivery, 55(12) (2003) 1547-1567. [29] Y.S. Choi, S.R. Hong, Y.M. Lee, K.W. Song, M.H. Park, Y.S.J.J.o.B.M.R.A.O.J.o.T.S.f.B. Nam, The Japanese Society for Biomaterials,, T.A.S.f. Biomaterials, t.K.S.f. Biomaterials, Studies on gelatin‐containing artificial skin: II. Preparation and characterization of cross‐linked gelatin‐hyaluronate sponge, 48(5) (1999) 631-639. [30] S. Gorgieva, V. Kokol, Collagen-vs. gelatine-based biomaterials and their biocompatibility: review and perspectives, Biomaterials applications for nanomedicine, InTech2011. [31] C.S. Ki, D.H. Baek, K.D. Gang, K.H. Lee, I.C. Um, Y.H.J.P. Park, Characterization of gelatin nanofiber prepared from gelatin–formic acid solution, 46(14) (2005) 5094-5102. [32] D. Li, Y.J.A.m. Xia, Electrospinning of nanofibers: reinventing the wheel?, 16(14) (2004) 1151-1170. [33] K. Mondal, A.J.R.A. Sharma, Recent advances in electrospun metal-oxide nanofiber based interfaces for electrochemical biosensing, 6(97) (2016) 94595-94616. [34] A. Haider, S. Haider, I.-K.J.A.J.o.C. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology, 11(8) (2018) 1165-1188. [35] N. Amiraliyan, M. Nouri, M.H.J.J.o.A.P.S. Kish, Effects of some electrospinning parameters on morphology of natural silk‐based nanofibers, 113(1) (2009) 226-234. [36] S. Haider, Y. Al-Zeghayer, F.A.A. Ali, A. Haider, A. Mahmood, W.A. Al-Masry, M. Imran, M.O.J.J.o.P.R. Aijaz, Highly aligned narrow diameter chitosan electrospun nanofibers, 20(4) (2013) 105. [37] T.J. Sill, H.A.J.B. von Recum, Electrospinning: applications in drug delivery and tissue engineering, 29(13) (2008) 1989-2006. [38] Fiber Diameter control by parameters optimization http://electrospintech.com/diameterparameters.html#.XWSsMEF-Ue0 [39] S. Megelski, J.S. Stephens, D.B. Chase, J.F.J.M. Rabolt, Micro-and nanostructured surface morphology on electrospun polymer fibers, 35(22) (2002) 8456-8466. [40] S. Huan, G. Liu, G. Han, W. Cheng, Z. Fu, Q. Wu, Q.J.M. Wang, Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers, 8(5) (2015) 2718-2734. [41] J. Pelipenko, J. Kristl, B. Janković, S. Baumgartner, P.J.I.j.o.p. Kocbek, The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers, 456(1) (2013) 125-134. [42] Y. Yang, X. Chen, F. Ding, P. Zhang, J. Liu, X.J.B. Gu, Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro, 28(9) (2007) 1643-1652. [43] B. Marelli, A. Alessandrino, S. Farè, G. Freddi, D. Mantovani, M.C.J.A.B. Tanzi, Compliant electrospun silk fibroin tubes for small vessel bypass grafting, 6(10) (2010) 4019-4026. [44] D.N. Rockwood, R.C. Preda, T. Yücel, X. Wang, M.L. Lovett, D.L.J.N.p. Kaplan, Materials fabrication from Bombyx mori silk fibroin, 6(10) (2011) 1612. [45] J.M. Corey, D.Y. Lin, K.B. Mycek, Q. Chen, S. Samuel, E.L. Feldman, D.C.J.J.o.B.M.R.P.A.A.O.J.o.T.S.f.B. Martin, The Japanese Society for Biomaterials,, T.A.S.f. Biomaterials, t.K.S.f. Biomaterials, Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth, 83(3) (2007) 636-645. [46] J. Nam, Y.H.J.J.o.A.P.S. Park, Morphology of regenerated silk fibroin: Effects of freezing temperature, alcohol addition, and molecular weight, 81(12) (2001) 3008-3021. [47] K. Yokoyama, N. Nio, Y.J.A.m. Kikuchi, biotechnology, Properties and applications of microbial transglutaminase, 64(4) (2004) 447-454. [48] M. Kieliszek, A.J.F.m. Misiewicz, Microbial transglutaminase and its application in the food industry. A review, 59(3) (2014) 241-250. [49] Yi-Hsuan Lee, Institute of Biomedical Engineering, National Tsing Hua University, [Protocol] Purification of microbial Transglutaminase(mTG) using Centrifugal Filter. [50] Electron Interaction with Matter https://commons.wikimedia.org/wiki/File:Electron_Interaction_with_Matter.svg [51] 國科會精密儀器中心,2004,《生物電子顯微鏡學》,全華圖書股份有限公司 [52] ASTM, D882 – 10, StandardTest Method for Tensile Properties of Thin Plastic Sheeting. [53] G.A. Holzapfel, C. Schulze-Bauer, G. Feigl, P.J.B. Regitnig, m.i. mechanobiology, Single lamellar mechanics of the human lumbar anulus fibrosus, 3(3) (2005) 125-140. [54] L. Jia, M.P. Prabhakaran, X. Qin, D. Kai, S.J.J.o.M.S. Ramakrishna, Biocompatibility evaluation of protein-incorporated electrospun polyurethane-based scaffolds with smooth muscle cells for vascular tissue engineering, 48(15) (2013) 5113-5124. [55] A.-K. Schubert, J.J. Smink, M. Pumberger, M. Putzier, M. Sittinger, J.J.J.o.o.s. Ringe, research, Standardisation of basal medium for reproducible culture of human annulus fibrosus and nucleus pulposus cells, 13(1) (2018) 209. [56] R.F. Wallin, E. Arscott, A practical guide to ISO 10993-5: Cytotoxicity, Medical Device and Diagnostic Industry 20 (1998) 96-98. [57] WST-1 Cell Proliferation Kit https://immunservice.com/produkt/wst-1-cell-proliferation-kit-ready-use/?lang=en [58] LDH Cytotoxicity Assay Kit http://www.blossombio.com/products/LDHCytotoxicityAssayKit.html [59] M.H. Hu, K.C. Yang, Y.J. Chen, Y.H. Sun, F.H. Lin, S.H.J.J.o.O.R. Yang, Optimization of puncture injury to rat caudal disc for mimicking early degeneration of intervertebral disc, 36(1) (2018) 202-211. [60] R. Thavarajah, V.K. Mudimbaimannar, J. Elizabeth, U.K. Rao, K.J.J.o.o. Ranganathan, m.p. JOMFP, Chemical and physical basics of routine formaldehyde fixation, 16(3) (2012) 400. [61] G.J.J.o.H. Sainte-Marie, Cytochemistry, A paraffin embedding technique for studies employing immunofluorescence, 10(3) (1962) 250-256. [62] R. Lillie, P. Pizzolato, P.J.H. Donaldson, Nuclear stains with soluble metachrome metal mordant dye lakes, 49(1) (1976) 23-35. [63] B.J.B. Llewellyn, Histochemistry, Nuclear staining with alum hematoxylin, 84(4) (2009) 159-177. [64] K. Wei, B.-S. Kim, I.-S.J.M. Kim, Fabrication and biocompatibility of electrospun silk biocomposites, 1(4) (2011) 275-298. [65] J. Magoshi, M. Mizuide, Y. Magoshi, K. Takahashi, M. Kubo, S.J.J.o.P.S.P.P.E. Nakamura, Physical properties and structure of silk. VI. Conformational changes in silk fibroin induced by immersion in water at 2 to 130 C, 17(3) (1979) 515-520. [66] Z. Zhang, T. Jiang, K. Ma, X. Cai, Y. Zhou, Y.J.J.o.M.C. Wang, Low temperature electrophoretic deposition of porous chitosan/silk fibroin composite coating for titanium biofunctionalization, 21(21) (2011) 7705-7713. [67] C. Aprill, N.J.T.B.j.o.r. Bogduk, High-intensity zone: a diagnostic sign of painful lumbar disc on magnetic resonance imaging, 65(773) (1992) 361-369. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61149 | - |
dc.description.abstract | 當椎間盤因退化而逐漸失去吸收外力衝擊的能力,會導致椎間盤的纖維環 (annulus fibrosis) 承受過大的壓力而破損,椎間盤內的膠狀物質本核 (nucleus pulposus) 將會流出椎間盤外,形成所謂的椎間盤突出 (disc herniation),進而壓迫到周圍的神經組織,使病人感到疼痛。目前臨床上面臨的問題是,骨科醫師在移除椎間盤突出後並無適當的手段或材料修復纖維環的缺損,該缺損有很高的機率再發生椎間盤突出,是潛在的危險區域。本篇研究的目的為開發模擬纖維環組織天然結構的材料,用以修復手術後纖維環的缺損,防止椎間盤突出的再發生。 本篇研究使用兩種天然高分子:蠶絲蛋白以及明膠作為材料,利用靜電紡織技術搭配高轉速收集器以製備出具有順向結構的單層電紡纖維膜,並將單層電紡纖維膜以明膠疊起,交聯後形成多層電紡支架以仿造天然椎間盤纖維環的結構。 本研究以FT-IR分析由天然蠶絲中萃取純化出的蠶絲蛋白,證實本研究能由天然蠶絲中萃取純化出蠶絲蛋白;以SEM觀察製備完成之單層電紡纖維膜與多層電紡支架,確認以該方法可製備出直徑在200 - 300 nm均勻且具方向的電紡纖維結構;拉升試驗的結果顯示本實驗製備的單層電紡纖維膜之楊式係數為3.18 - 6.70 MPa、最大拉升強度為0.96 - 1.81 MPa、伸長量為60 - 90 %、韌性為0.3 - 1.1 MJ/m3,均相似或優於天然的單層AF組織;量測多層薄膜支架的膨脹率的結果顯示,多層電紡支架約有20 - 30 %的膨脹率,可藉由膨脹以達到固定多層電紡支架的效果。 目前在細胞結果中,由WST-1、LDH與Live/dead染色結果可知,本研究所製備出來的蠶絲蛋白/明膠電紡纖維膜具有良好的生物相容性。進一步利用SEM觀察到椎間盤細胞能貼附於電紡纖維膜上,並沿著纖維的順向結構延長、細胞逐漸遷移進入電紡纖維的孔洞。而在動物實驗的MRI的影像訊號上,推測本研究製備的多層電紡支架能阻止high intensity zone (HIZ) 的形成,因而更有利於纖維環之修復;椎間盤攝影術的實驗結果顯示植入多層電紡支架的組別對於纖維環缺損的修復成效明顯優於未經處理的組別。 因此,我們認為本研究所製備的蠶絲蛋白/明膠多層電紡支架具有修復椎間盤纖維環缺損的潛力。 | zh_TW |
dc.description.abstract | Intervertebral disc degenerates with age and would lose the function of absorbing impact, which lead to the lesions in annulus fibrosis (AF). Then the gelatinous core in intervertebral disc, nucleus pulposus (NP) may leak outside of the disc, forming the so called disc herniation. It would compress the surrounding nerves, causing the suffering of the patients. Currently, the clinical problem is that there is no appropriate approach or material to seal the AF lesions caused by discectomy. The untreated defects in AF are potential sites for recurrent herniation. To solve this problem, we developed a scaffold which mimics the structure of native AF to repair the lesions after discectomy and prevent recurrent herniation. In this study, we chose two nature polymer as scaffold material: silk fibroin and gelatin. To produce the scaffold which mimics the structure of native AF, we use electrospinning technic with high speed rotating collector to produce membranes with preferred orientation fiber. Then gelatin is used as adhesive to stack the membrane layer by layer with specific angle alternatively. After cross-linking, a multilayer scaffold would be produced. In this study, FT-IR is used to confirm the fingerprint region of fibroin extracted from nature silk cocoon. The single layer electrospun membrane and multilayer scaffold were analyzed by SEM to confirm that the fiber diameter is around 200 - 300 nm with preferred orientation. The results of tensile test showed several mechanical properties of the single layer electrospun membrane developed in this study: elastic modulus is around 3.18 - 6.70 MPa, UTS is around 0.96 - 1.81 MPa, elongation is around 60 - 90% and toughness is around 0.3 - 1.1 MJ/m3. And all the mentioned mechanical properties are similar or superior to native AF tissue. The results of swelling test showed that the multilayer scaffold would swell 20 - 30% in aqueous solution, and the swelling would provide better scaffold fixation after surgery. The current results of in vitro study, WST-1, LDH and Live/dead staining were done to verify the biocompatibility of electrospun membrane. The SEM images showed that both AF cell and NP cell can adhere on electrospun membrane and migrate into the pores of electrospun fibers. From MRI images of in vivo study, we suspected that the multilayer scaffold developed in this study may prevent the formation of high intensity zone (HIZ), hence it’s better for annulus repair. The results of discography showed that the effectiveness of annulus repair of implant group was much superior to untreated (injury) group. Hence, we supposed that the fibroin/gelatin multilayer scaffold developed in this study have great potential for annulus fibrosis repair. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:49:27Z (GMT). No. of bitstreams: 1 U0001-3006202018452500.pdf: 5610589 bytes, checksum: cf23a694882a60edacfa823ca63516c9 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………………# 致謝………………………………………………………………………i 中文摘要…………………………………………………………………ii ABSTRACT…………………………………………………………………iii 目錄………………………………………………………………………v 圖目錄……………………………………………………………………viii 表目錄……………………………………………………………………x 公式目錄…………………………………………………………………xi 縮寫………………………………………………………………………xii 第一章 前言…………………………………………………………… 1 1-1 椎間盤結構與功能…………………………………………………1 1-2 椎間盤退化機制……………………………………………………2 1-3 現今手術方法及問題………………………………………………3 1-4 纖維環之修補策略…………………………………………………3 1-5 實驗目的……………………………………………………………4 第二章 理論基礎……………………………………………………… 5 2-1 組織工程……………………………………………………………5 2-2 蠶絲蛋白……………………………………………………………5 2-3 明膠…………………………………………………………………8 2-4 靜電紡織技術………………………………………………………9 第三章 材料與實驗方法……………………………………………… 12 3-1 實驗儀器……………………………………………………………12 3-2 實驗藥品……………………………………………………………13 3-3 實驗流程圖…………………………………………………………14 3-4 材料製備……………………………………………………………15 3-4-1 由蠶絲中萃取蠶絲蛋白…………………………………………15 3-4-2 以電紡織技術製備蠶絲蛋白/明膠平行纖維膜……………… 16 3-4-3 微生物轉麩胺酸醯胺基酶之萃取與純化………………………17 3-4-3 多層電紡薄膜支架織製備………………………………………18 3-4-4 材料滅菌…………………………………………………………18 3-5 材料鑑定……………………………………………………………19 3-5-1 傅立葉轉換紅外光光譜 (FT-IR) 分析……………………… 19 3-5-2 膜厚度量測………………………………………………………19 3-5-3 掃描式電子顯微鏡 (SEM) 分析……………………………… 19 3-5-4 掃描式電子顯微鏡樣品製備……………………………………20 3-5-5 機械性質量測……………………………………………………22 3-5-6 多層薄膜支架膨脹率量測………………………………………23 3-6 In vitro細胞實驗…………………………………………………24 3-6-1 細胞培養…………………………………………………………24 3-6-2 材料萃取液製備…………………………………………………25 3-6-3 細胞活性測試……………………………………………………26 3-6-4 細胞毒性測試……………………………………………………27 3-6-5 Live/dead 細胞染色……………………………………………28 3-6-6細胞貼附性測試………………………………………………… 29 3-7 In vivo動物實驗………………………………………………… 29 3-7-1 手術方法…………………………………………………………30 3-7-2 X光檢查………………………………………………………… 31 3-7-3 MRI影像………………………………………………………… 32 3-7-4 椎間盤攝影 (Discography)……………………………………32 3-7-5 組織固定、脫鈣…………………………………………………32 3-7-6 石蠟包埋、切片…………………………………………………32 3-7-7 蘇木紫-伊紅染色 (H E染色)………………………………… 32 3-8 統計分析……………………………………………………………33 第四章 實驗結果與討論……………………………………………… 34 4-1 傅立葉轉換紅外光光譜分析蠶絲蛋白……………………………34 4-2 掃描式電子顯微鏡 (SEM) 分析結果…………………………… 35 4-2-1 天然AF組織結構…………………………………………………35 4-2-2 製備完成電紡纖維膜之微結構…………………………………36 4-2-3 製備完成多層電紡支架之微結構………………………………38 4-3 材料機械性質實驗結果……………………………………………39 4-4 材料膨脹率分析……………………………………………………41 4-5 生物相容性分析……………………………………………………42 4-6 細胞毒性分析………………………………………………………44 4-7 Live/dead染色分析……………………………………………… 45 4-8 細胞貼附性分析……………………………………………………47 4-9 以X-ray觀察實驗動物椎間盤高度之變化……………………… 49 4-10 MRI影像……………………………………………………………50 4-11 椎間盤攝影……………………………………………………… 51 第五章 結論…………………………………………………………… 53 參考文獻…………………………………………………………………54 | |
dc.language.iso | zh-TW | |
dc.title | 以靜電紡織製備蠶絲蛋白/明膠多層平行纖維支架應用於椎間盤纖維環修補 | zh_TW |
dc.title | Electrospun Fibroin/Gelatin Multilayer Scaffold for Annulus Fibrosus Repair | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 楊曙華(Shu-Hua Yang) | |
dc.contributor.coadvisor-orcid | 楊曙華(0000-0002-9879-0164) | |
dc.contributor.oralexamcommittee | 郭士民 (Shyh Ming Kuo),姚俊旭(Chun-Hsu Yao),胡名孝(Ming-Hsiao Hu) | |
dc.contributor.oralexamcommittee-orcid | ,胡名孝(0000-0001-8920-2052) | |
dc.subject.keyword | 椎間盤退化,纖維環修復,蠶絲蛋白,靜電紡絲, | zh_TW |
dc.subject.keyword | degeneration of the intervertebral disc (IVDD),repair of annulus fibrosus,fibroin,electrospinning, | en |
dc.relation.page | 58 | |
dc.identifier.doi | 10.6342/NTU202001219 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-07-03 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-3006202018452500.pdf 目前未授權公開取用 | 5.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。