Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61126
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor奧山利規(Toshinori Okuyama)
dc.contributor.authorSan-He Wuen
dc.contributor.author吳三和zh_TW
dc.date.accessioned2021-06-16T10:48:02Z-
dc.date.available2016-08-17
dc.date.copyright2013-08-17
dc.date.issued2013
dc.date.submitted2013-08-12
dc.identifier.citationAbad-Moyano R, Urbaneja A, Hoffmann D, Schausberger P. 2010. Effects of Euseius stipulatus on establishment and efficacy in spider mite suppression of Neoseiulus californicus and Phytoseiulus persimilis in clementine. Experimental and Applied Acarology 50: 329-341.
Abrams PA. 1982. Functional responses of optimal foragers. American Naturalist 120: 382-390.
Abrams PA. 2010. Implications of flexible foraging for interspecific interactions: lessons from simple models. Functional Ecology 24: 7-17.
Agboton BV, Hanna R, Onzo A, Vidal S, von Tiedemann A. 2013. Interactions between the predatory mite Typhlodromalus aripo and the entomopathogenic fungus Neozygites tanajoae and consequences for the suppression of their shared prey/host Mononychellus tanajoa. Experimental and Applied Acarology 60: 205-217.
Akaike H. 1973. Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds). Second international symposium on information theory. Akademiai Kiado, Budapest, Hungary. pp. 267-281.
Alexander ME, Dick JTA, O'Connor NE. 2013. Born to kill: predatory functional responses of the littoral amphipod Echinogammarus marinus Leach throughout its life history. Journal of Experimental Marine Biology and Ecology 439: 92-99.
Ameixa OMCC, Messelink GJ, Kindlmann P. 2013. Nonlinearities lead to qualitative differences in population dynamics of predator-prey systems. PLoS ONE 8: e62530.
Arditi R, Akçakaya HR. 1990. Underestimation of mutual interference of predators. Oecologia 83: 358-361.
Baverstock J, Clark SJ, Alderson PG, Pell JK. 2009. Intraguild interactions between the entomopathogenic fungus Pandora neoaphidis and an aphid predator and parasitoid at the population scale. Journal of Invertebrate Pathology 102: 167-172.
Beddington JR. 1975. Mutual interference between parasites or predators and its effect on searching efficiency. Journal of Animal Ecology 44: 331-340.
Bolker B, Holyoak M, Křivan V, Rowe L, Schmitz O. 2003. Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 84: 1101-1114.
Bolker BM. 2008. Ecological models and data in R. Princeton University Press, New Jeresy, USA.
Briggs CJ, Borer ET. 2005. Why short-term experiments may not allow long-term predictions about intraguild predation. Ecological Applications 15: 1111-1117.
Burnham KP, Anderson DR. 2002. Model selection and multi-model inference: a practical information-theoretic approach. Springer, New York, USA.
Case TJ. 2000. An illustrated guide to theoretical ecology. Oxford University Press, New York, USA.
Chacón JM, Landis DA, Heimpel GE. 2008. Potential for biotic interference of a classical biological control agent of the soybean aphid. Biological Control 46: 216-225.
Chow A, Chau A, Heinz KM. 2010. Compatibility of Amblyseius (Typhlodromips) swirskii (Athias-Henriot) (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae) for biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on roses. Biological Control 53: 188-196.
Collazo JA, Gilliam JF, Miranda-Castro L. 2010. Functional response models to estimate feeding rates of wading birds. Waterbirds 33: 33-40.
Crumrine PW. 2010. Size-structured cannibalism between top predators promotes the survival of intermediate predators in an intraguild predation system. Journal of the North American Benthological Society 29: 636-646.
Culler LE, Lamp WO. 2009. Selective predation by larval Agabus (Coleoptera: Dytiscidae) on mosquitoes: support for conservation-based mosquito suppression in constructed wetlands. Freshwater Biology 54: 2003-2014.
Cusumano A, Peri E, Vinson SB, Colazza S. 2011. Intraguild interactions between two egg parasitoids exploring host patches. BioControl 56: 173-184.
De Clercq P, Mohaghegh J, Tirry L. 2000. Effect of host plant on the functional response of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Biological Control 18: 65-70.
DeAngelis DL, Goldstein RA, O'neill RV. 1975. A model for trophic interaction. Ecology 56: 881-892.
Farhadi R, Allahyari H, Juliano SA. 2010. Functional response of larval and adult stages of Hippodamia variegata (Coleoptera: Coccinellidae) to different densities of Aphis fabae (Hemiptera: Aphididae). Environmental Entomology 39: 1586-1592.
Ferreira JAM, Cunha DFS, Pallini A, Sabelis MW, Janssen A. 2011. Leaf domatia reduce intraguild predation among predatory mites. Ecological Entomology 36: 435-441.
González-Fernández JJ, de la Peña F, Hormaza JI, Boyero JR, Vela JM, Wong E, Trigo MM, Montserrat M. 2009. Alternative food improves the combined effect of an omnivore and a predator on biological pest control. A case study in avocado orchards. Bulletin of Entomological Research 99: 433-444.
Grabowski JH, Hughes AR, Kimbro DL. 2008. Habitat complexity influences cascading effects of multiple predators. Ecology 89: 3413-3422.
Grez AA, Zaviezo T, Mancilla A. 2011. Effect of prey density on intraguild interactions among foliar- and ground-foraging predators of aphids associated with alfalfa crops in Chile: a laboratory assessment. Entomologia Experimentalis et Applicata 139: 1-7.
Hastings A. 1997. Population biology: concepts and models. Springer, New York, USA.
Herrick NJ, Reitz SR, Carpenter JE, O’Brien CW. 2008. Predation by Podisus maculiventris (Hemiptera: Pentatomidae) on Plutella xylostella (Lepidoptera: Plutellidae) larvae parasitized by Cotesia plutellae (Hymenoptera: Braconidae) and its impact on cabbage. Biological Control 45: 386-395.
Hilborn R. 1997. The ecological detective: confronting models with data. Princeton University Press, New Jeresy, USA.
Hogg BN, Daane KM. 2011. Diversity and invasion within a predator community: impacts on herbivore suppression. Journal of Applied Ecology 48: 453-461.
Hogg BN, Wang XG, Levy K, Mills NJ, Daane KM. 2013. Complementary effects of resident natural enemies on the suppression of the introduced moth Epiphyas postvittana. Biological Control 64: 125-131.
Holling CS. 1959. The components of predation as revealed by a study of small-mammal predation of the european pine sawfly. The Canadian Entomologist 91: 293-320.
Holt RD, Huxel GR. 2007. Alternative prey and the dynamics of intraguild predation: theoretical perspectives. Ecology 88: 2706-2712.
Hosseini M, Ashouri A, Enkegaard A, Weisser WW, Goldansaz SH, Mahalati MN, Moayeri HRS. 2010. Plant quality effects on intraguild predation between Orius laevigatus and Aphidoletes aphidimyza. Entomologia Experimentalis et Applicata 135: 208-216.
Janssen A, Montserrat M, HilleRisLambers R, de Roos AM, Pallini A, Sabelis MW. 2006. Intraguild predation usually does not disrupt biological control trophic and guild in biological interactions control. In: Brodeur J, Boivin G (eds). Trophic and guild interactions in biological control. Springer, Netherlands. pp. 21-44.
Janssen A, Sabelis MW, Magalhães S, Montserrat M, Van der Hammen T. 2007. Habitat structure affects intraguild predation. Ecology 88: 2713-2719.
Johnson JB, Omland KS. 2004. Model selection in ecology and evolution. Trends in Ecology & Evolution 19: 101-108.
Kishida O, Trussell GC, Nishimura K. 2009. Top-down effects on antagonistic inducible defense and offense. Ecology 90: 1217-1226.
Kratina P, Vos M, Bateman A, Anholt BR. 2009. Functional responses modified by predator density. Oecologia 159: 425-433.
Křivan V, Diehl S. 2005. Adaptive omnivory and species coexistence in tri-trophic food webs. Theoretical Population Biology 67: 85-99.
Law YH, Rosenheim JA. 2011. Effects of combining an intraguild predator with a cannibalistic intermediate predator on a species-level trophic cascade. Ecology 92: 333-341.
Lee JH, Kang TJ. 2004. Functional response of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) to Aphis gossypii Glover (Homoptera: Aphididae) in the laboratory. Biological Control 31: 306-310.
Médoc V, Spataro T, Arditi R. 2013. Prey: predator ratio dependence in the functional response of a freshwater amphipod. Freshwater Biology 58: 858-865.
Madadi H, Enkegaard A, Brødsgaard HF, Kharrazi-Pakdel A, Ashouri A, Mohaghegh-Neishabouri J. 2009. Interactions between Orius albidipennis (Heteroptera: Anthocoridae) and Neoseiulus cucumeris (Acari: Phytoseiidae): effects of host plants under microcosm condition. Biological Control 50: 137-142.
Messelink GJ, Bloemhard CMJ, Sabelis MW, Janssen A. 2013. Biological control of aphids in the presence of thrips and their enemies. BioControl 58: 45-55.
Moreno CR, Lewins SA, Barbosa P. 2010. Influence of relative abundance and taxonomic identity on the effectiveness of generalist predators as biological control agents. Biological Control 52: 96-103.
Mylius SD, Klumpers K, de Roos AM, Persson L. 2001. Impact of intraguild predation and stage structure on simple communities along a productivity gradient. American Naturalist 158: 259-276.
Noppe C, Michaud JP, De Clercq P. 2012. Intraguild predation between lady beetles and lacewings: outcomes and consequences vary with focal prey and arena of interaction. Annals of the Entomological Society of America 105: 562-571.
Ofuya TI. 1986. Predation by Cheilomenes Vicina [Coleoptera: Coccinellidae] on the cowpea aphid, Aphis craccivora [Homoptera: Aphididae] : effect of prey stage and density. Entomophaga 31: 331-335.
Okuyama T. 2009. Intraguild predation in biological control: consideration of multiple resource species. BioControl 54: 3-7.
Okuyama T. 2012. Flexible components of functional responses. Journal of Animal Ecology 81: 185-189.
Okuyama T. 2013. On selection of functional response models: Holling’s models and more. BioControl 58: 293-298.
Okuyama T, Bolker BM. 2012. Model-based, response-surface approaches to quantifying indirect interactions. In: Ohgushi T, Schmitz O, Holt RD (eds). Trait-mediated indirect interactions: ecological and evolutionary perspectives. Cambridge University Press, Cambridge, UK. pp. 186-206.
Okuyama T, Ruyle RL. 2011. Solutions for functional response experiments. Acta Oecologica 37: 512-516.
Paull CA, Schellhorn NA, HilleRisLambers R, Austin AD. 2012. Escape from parasitoids leave larvae vulnerable to predators and has unexpected outcomes for pest suppression. Basic and Applied Ecology 13: 542-550.
Pervez A, Omkar. 2005. Functional responses of coccinellid predators: an illustration of a logistic approach. Journal of Insect Science 5: 1-6.
R Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria. URL. http://www.R-project.org.
Rahman T, Spafford H, Broughton S. 2011. Single versus multiple releases of predatory mites combined with spinosad for the management of western flower thrips in strawberry. Crop Protection 30: 468-475.
Reigada C, Godoy WAC. 2012. Direct and indirect top‐down effects of previous contact with an enemy on the feeding behavior of blowfly larvae. Entomologia Experimentalis et Applicata 142: 71-77.
Rogers D. 1972. Random search and insect population models. Journal of Animal Ecology 41: 369-383.
Rosenzweig ML, MacArthur RH. 1963. Graphical representation and stability conditions of predator-prey interactions. American Naturalist 97: 209-223.
Rudolf VHW. 2008. Consequences of size structure in the prey for predator–prey dynamics: the composite functional response. Journal of Animal Ecology 77: 520-528.
Ruxton GD, Gurney WSC. 1994. Deriving the functional response without assuming homogeneity. American Naturalist 144: 537-541.
Saha N, Aditya G, Banerjee S, Saha GK. 2012. Predation potential of odonates on mosquito larvae: implications for biological control. Biological Control 63: 1-8.
Schmitt RJ, Holbrook SJ, Brooks AJ, Lape JCP. 2009. Intraguild predation in a structured habitat: distinguishing multiple-predator effects from competitor effects. Ecology 90: 2434-2443.
Seko T, Miura K. 2008. Functional response of the lady beetle Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) on the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Applied Entomology and Zoology 43: 341-345.
Shakya S, Coll M, Weintraub PG. 2010. Incorporation of intraguild predation into a pest management decision-making tool: the case of thrips and two pollen-feeding predators in strawberry. Journal of Economic Entomology 103: 1086-1093.
Spataro T, Bacher S, Bersier LF, Arditi R. 2012. Ratio-dependent predation in a field experiment with wasps. Ecosphere 3: art. 124.
Turchin P. 2003. Complex population dynamics: a theoretical/empirical synthesis. Princeton University Press, Princeton, New Jersey, USA.
Vacari AM, De Bortoli SA, Torres JB. 2012. Relationship between predation by Podisus nigrispinus and developmental phase and density of its prey, Plutella xylostella. Entomologia Experimentalis et Applicata 145: 30-37.
Vance-Chalcraft HD, Rosenheim JA, Vonesh JR, Osenberg CW, Sih A. 2007. The influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology 88: 2689-2696.
Vieira LC, Salom SM, Kok LT. 2012. Functional and numerical response of Laricobius spp. predators (Coleoptera: Derodontidae) on hemlock woolly adelgid, Adelges tsugae (Hemiptera: Adelgidae). Biological Control 61: 47-54.
Vonesh JR, Bolker BM. 2005. Compensatory larval responses shift trade-offs associated with predator-induced hatching plasticity. Ecology 86: 1580-1591.
Vucetich JA, Peterson RO, Schaefer CL. 2002. The effect of prey and predator densities on wolf predation. Ecology 83: 3003-3013.
Wells ML, McPherson RM. 1999. Population dynamics of three coccinellids in flue-cured tobacco and functional response of Hippodamia convergens (Coleoptera: Coccinellidae) feeding on tobacco aphids (Homoptera: Aphididae). Environmental Entomology 28: 768-773.
Wells PM, Baverstock J, Majerus MEN, Jiggins FM, Roy HE, Pell JK. 2011. The effect of the coccinellid Harmonia axyridis (Coleoptera: Coccinellidae) on transmission of the fungal pathogen Pandora neoaphidis (Entomophthorales: Entomophthoraceae). European Journal of Entomology 108: 87-90.
Whitehouse MEA, Mansfield S, Barnett MC, Broughton K. 2011. From lynx spiders to cotton: behaviourally mediated predator effects over four trophic levels. Austral Ecology 36: 687-697.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61126-
dc.description.abstract生物防治媒介 (biological control agent) 的挑選對害蟲管理的成功與否相當重要。但由於生物防治媒介之間有相互攻擊的可能性,使防治媒介的挑選變得格外困難 (即同生態功能群個體間相互捕食;intraguild predation)。根據實際研究,使用多種生物防治媒介時,與僅使用單一防治媒介相比,害蟲族群量有上升、下降或不變等情形。然而,現有的模型無法解釋為何有效果上的差異。為了讓理論研究能夠與實際研究相符,此篇論文同時使用實作與理論等研究方法。在實作方面,進行了四種常見生物防治媒介 (基徵草蛉、小十三星瓢蟲、赤星瓢蟲、錨紋瓢蟲) 的功能反應 (functional response) 實驗。在理論部份,藉由實驗數據的支持,建立了一同功群間捕食的數學模型。對新模型進行分析後發現,此模型能夠解釋實際研究時效果上的差異。且此數學模型的分析結果,也討論了生物防治媒介上的挑選。zh_TW
dc.description.abstractThe selection of biological control agents is a crucial decision for the success of pest management practices, which is made difficult by predation among agents (i.e., intraguild predation, IGP). Empirical studies show that the use of multiple agents can have positive, negative, or neutral effects on the control of pest populations (compared to the use of the single most efficient agent). However, current theoretical models are unable to explain the observed variation in biological control outcomes. This study combined theoretical and empirical approaches to bridge the gap between theory and observed patterns. In the empirical part, the functional responses of four common biological agents (Mallada basalis, Harmonia dimidiate, Lemnia saucia and Lemnia biplagiata) were determined. In the theoretical part, a mathematical model of IGP was developed by using the functional response model that was best supported in the experiment. The analysis of the model indicated that the model can explain the variation in biological control outcomes found in empirical studies. Biological control implications of model predictions are discussed with respect to the selection of biological control agents.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:48:02Z (GMT). No. of bitstreams: 1
ntu-102-R00632001-1.pdf: 738424 bytes, checksum: 41441dc7e3f1c4cecb4972314b799c65 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsAcknowledgement i
Chinese abstract ii
Abstract iii
Table of contents iv
List of figures v
List of tables vi
1. Introduction 1
2. Functional response of biological control agents 4
2.1 Materials and Methods 4
2.1.1 Indirect method 5
2.1.1.1 Data 5
2.1.1.2 Statistical method 6
2.1.2 Direct method 8
2.1.2.1 Data 8
2.1.2.2 Statistical method 8
2.2 Results 9
3. Flexible functional response in IGP dynamics 11
3.1 The model 11
3.2 Analysis 12
3.3 Results 13
4. Discussion 15
References 19
Appendix 33
dc.language.isoen
dc.subject同生態功能群個體間相互捕食zh_TW
dc.subject功能反應zh_TW
dc.subject生物防治zh_TW
dc.subject草蛉zh_TW
dc.subject瓢蟲zh_TW
dc.subjectintraguild predationen
dc.subjectfunctional responseen
dc.subjectbiological controlen
dc.subjectgreen lacewingen
dc.subjectladybird beetleen
dc.title同功群間捕食在生物防治中所扮演之角色zh_TW
dc.titleThe role of intraguild predation in biological controlen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃榮南,任秀慧
dc.subject.keyword同生態功能群個體間相互捕食,功能反應,生物防治,草蛉,瓢蟲,zh_TW
dc.subject.keywordintraguild predation,functional response,biological control,green lacewing,ladybird beetle,en
dc.relation.page35
dc.rights.note有償授權
dc.date.accepted2013-08-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
721.12 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved