請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61121
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉佩玲(Pei-Ling Liu),江秉穎(Ping-Ying Chiang) | |
dc.contributor.author | Yu-Sheng Wu | en |
dc.contributor.author | 吳宇盛 | zh_TW |
dc.date.accessioned | 2021-06-16T10:47:44Z | - |
dc.date.available | 2018-08-16 | |
dc.date.copyright | 2013-08-16 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-12 | |
dc.identifier.citation | Abarbanel, Henry DI, and Jerry P. Gollub. 'Analysis of observed chaotic data.' Physics Today 49 (1996): 86.
Abarbanel, Henry DI, and Matthew B. Kennel. 'Local false nearest neighbors and dynamical dimensions from observed chaotic data.' Physical Review E 47.5 (1993): 3057. Abdullah, H., Holland, G., Cosic, I., & Cvetkovic, D. (2009, September). Correlation of sleep EEG frequency bands and heart rate variability. In Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE (pp. 5014-5017). IEEE. Al-Angari, Haitham M., and Alan V. Sahakian. 'Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome.' Biomedical Engineering, IEEE Transactions on 54.10 (2007): 1900-1904. Baharav, A., Kotagal, S., Rubin, B. K., Pratt, J., & Akselrod, S. (1999). Autonomic cardiovascular control in children with obstructive sleep apnea. Clinical Autonomic Research, 9(6), 345-351. Brennan, M., M. Palaniswami, and P. Kamen. 'Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability?.' Biomedical Engineering, IEEE Transactions on 48.11 (2001): 1342-1347. Cooper, James K. 'Electrocardiography 100 years ago.' New England Journal of Medicine 315.7 (1986): 461-464. Fell, Jurgen, et al. 'Nonlinear analysis of continuous ECG during sleep I. Reconstruction.' Biological Cybernetics 82.6 (2000): 477-483. Fojt, Otakar, and Jiri Holcik. 'Applying nonlinear dynamics to ECG signal processing.' Engineering in Medicine and Biology Magazine, IEEE 17.2 (1998): 96-101. Fraser, Andrew M., and Harry L. Swinney. 'Independent coordinates for strange attractors from mutual information.' Physical review A 33.2 (1986): 1134. Guilleminault, Christian, Ara Tilkian, and William C. Dement. 'The sleep apnea syndromes.' Annual review of medicine 27.1 (1976): 465-484. Gula, L. J., Krahn, A. D., Skanes, A., Ferguson, K. A., George, C., Yee, R., & Klein, G. J. (2003). Heart rate variability in obstructive sleep apnea: a prospective study and frequency domain analysis. Annals of Noninvasive Electrocardiology, 8(2), 144-149. Hayano, J., Sakakibara, Y., Yamada, A., Yamada, M., Mukai, S., Fujinami, T., ... & Takata, K. (1991). Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. The American journal of cardiology, 67(2), 199-204. Kamen, P. W., H. Krum, and A. M. Tonkin. 'Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans.' Clinical science (London, England: 1979) 91.2 (1996): 201. Khoo, Michael CK, Tae–Sun Kim, and R. Berry. 'Spectral indices of cardiac autonomic function in obstructive sleep apnea.' SLEEP-NEW YORK- 22 (1999): 443-452. Kleiger, R. E., Miller, J. P., Bigger, J. T., & Moss, A. J. (1987). Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. The American journal of cardiology, 59(4), 256-262 Lavie, Peretz, Paula Herer, and Victor Hoffstein. 'Obstructive sleep apnoea syndrome as a risk factor for hypertension: population study.' Bmj 320.7233 (2000): 479-482.. Lanfranchi, Paola, and Virend A. Somers. 'Obstructive sleep apnea and vascular disease.' Respiratory research 2.6 (2001): 315. Lorenz, Edward N. 'Deterministic nonperiodic flow.' Journal of the atmospheric sciences 20.2 (1963): 130-141. Otzenberger, H., Simon, C., Gronfier, C., & Brandenberger, G. (1997). Temporal relationship between dynamic heart rate variability and electroencephalographic activity during sleep in man. Neuroscience letters, 229(3), 173-176. Otzenberger, H., Gronfier, C., Simon, C., Charloux, A., Ehrhart, J., Piquard, F., & Brandenberger, G. (1998). Dynamic heart rate variability: a tool for exploring sympathovagal balance continuously during sleep in men. American Journal of Physiology-Heart and Circulatory Physiology, 275(3), H946-H950. Pan, Jiapu, and Willis J. Tompkins. 'A real-time QRS detection algorithm.' Biomedical Engineering, IEEE Transactions on 3 (1985): 230-236. Parish, J. M., & Somers, V. K. (2004, August). Obstructive sleep apnea and cardiovascular disease. In Mayo Clinic Proceedings (Vol. 79, No. 8, pp. 1036-1047). Mayo Foundation Roche, F., Gaspoz, J. M., Minini, P., Pichot, V., Duverney, D., Costes, F., ... & Barthelemy, J. C. (1999). Screening of obstructive sleep apnea syndrome by heart rate variability analysis. Circulation, 100(13), 1411-1415. Shannon, Claude Elwood, and Warren Weaver. 'A mathematical theory of communication.' (1948): 623-423. Skinner, J. E., Carpeggiani, C., Landisman, C. E., & Fulton, K. W. (1991). Correlation dimension of heartbeat intervals is reduced in conscious pigs by myocardial ischemia. Circulation research, 68(4), 966-976. Somers, Virend K., et al. 'Sympathetic neural mechanisms in obstructive sleep apnea.' Journal of Clinical Investigation 96.4 (1995): 1897. Takens, Floris. 'Detecting strange attractors in turbulence.' Dynamical systems and turbulence, Warwick 1980 (1981): 366-381. Toichi, Motomi, et al. 'A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of RR interval.' Journal of the autonomic nervous system 62.1-2 (1997): 79-84. Tulppo, M. P., Makikallio, T. H., Takala, T. E., Seppanen, T. H. H. V., & Huikuri, H. V. (1996). Quantitative beat-to-beat analysis of heart rate dynamics during exercise. American Journal of Physiology-Heart and Circulatory Physiology, 271(1), H244-H252. Tsunoda, M., Endo, T., Hashimoto, S., Honma, S., & Honma, K. I. (2008). Effects of light and sleep stages on heart rate variability in humans. Psychiatry and Clinical Neurosciences, 55(3), 285-286. Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16(3), 285-317. Woo, M. A., Stevenson, W. G., Moser, D. K., Trelease, R. B., & Harper, R. M. (1992). Patterns of beat-to-beat heart rate variability in advanced heart failure. American heart journal, 123(3), 704-710. Young, T., Palta, M., Dempsey, J., Skatrud, J., Weber, S., & Badr, S. (1993). The occurrence of sleep-disordered breathing among middle-aged adults. New England Journal of Medicine, 328(17), 1230-1235. Young, Terry, James Skatrud, and Paul E. Peppard. 'Risk factors for obstructive sleep apnea in adults.' JAMA: the journal of the American Medical Association 291.16 (2004): 2013-2016. 劉勝義 臨床睡眠檢查學 2004 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61121 | - |
dc.description.abstract | 本研究利用了渾沌理論中的龐加萊以及相空間重構法,分析受試者的睡眠心跳變異率,找出睡眠呼吸中止症的心跳特徵。
龐加萊方法是將心跳變異率的x(i)作為橫軸,x(i+1)作為縱軸,以逆時針旋轉 後,成為 與 軸,接著計算座標值與 及 軸之標準偏差量SD1與SD2,進行後續分析。 相空間重構是將心跳變異率x(i)先藉由平均互訊息法決定延遲時間,接著由假鄰近點方法決定嵌入維度後,計算相空間李亞普諾指數,進行後續分析。 研究中有十七位健康正常人與十九位睡眠呼吸中止症患者,共三十六位受試者進行睡眠檢查,取得整晚所紀錄的心電圖以及睡眠技師所判讀的睡眠階段後,將各睡眠階段心電圖中的所有R波時間取出,形成R-R時間差的心跳變異率序列。 龐加萊分析結果發現,睡眠呼吸中止症病患整晚的交感神經指標SD1/SD2顯著較大(p=0.025)。另外,也發現病患在睡眠第一期(p=0.022)、睡眠第二期(p= 0.019)、睡眠第三期(p=0.002)、以及快速眼動期(p<0.001)交感神經指標SD1/SD2都顯著的較健康人大,這樣的結果顯示呼吸中止症患者在上述睡眠期間交感神經都比健康人的緊張。病患的副交感神經指標SD1*SD2在快速眼動期時,比健康人要來小,且有顯著差異(p<0.001),顯示在快速眼動期副交感神經都作用較弱。 相空間重構結果發現健康人與呼吸中止症患者在整晚的心跳變異率的嵌入維度相差不大,但分析相空間軌跡所計算的李亞普諾指數後發現,病患整晚的心跳變異率李亞普諾指數顯著較健康人小(p=0.009),另外,呼吸中止症患者在睡眠清醒期(p=0.002)、睡眠第一期(p=0.018)、睡眠第二期(p<0.001)以及快速眼動期(p=0.002)中有比健康人低的李亞普諾指數,顯示健康人有較為渾沌的心跳。 比起需要量測口、鼻氣流的傳統方法,本研究提出只要心電訊號,就可成為初步篩檢睡眠呼吸中止症的簡易輔助工具 | zh_TW |
dc.description.abstract | This study develops ECG markers of sleep apnea syndrome based on all-night sleep ECG. First of all, the sleep ECG have been recorded for 17 normal controls and 19 sleep apnea patients. Second, ECG is transformed to R-R intervals and named HRV. Third, using the Poincare Map and Reconstructed Phase Space to analyze HRV in sleep.
Using Poincare Map, the plot of x(i) and x(i+1) of HRV, and oriented with the line-of-identity are denoted by and ,then the dispersion of the points around and are measured by the standard deviation denoted by SD1 and SD2. Using Reconstructed Phase Space, determine the delay time by using Average Mutual Information and then followed by using nearest neighbor to determine the invading dimension, and calculating the Lyapunov exponent of Reconstructed Phase Space. Poincare map’s results shown that, in all night HRV, two groups are significant difference in P value (p=0.025) in SD1/SD2, and in sleep stage 1(p=0.022), 2(p=0.019), 3(p=0.002) and REM(p<0.001), are also significant difference in P value in SD1/SD2, which represents sleep apnea group’s sympathetic nerve level are higher. On the other hand, two groups are significant difference in P value in sleep stage REM (p<0.001) in SD1*SD2, which represents the parasympathetic nerve. This means control group are more relax than sleep apnea group in this stages. Reconstructed Phase Space’s results shown that the invading dimensions are no difference between control group and sleep apnea group, but the Lyapunov exponents between two groups are significant difference in P value (P<0.009), and in sleep stage wake(p=0.002), 1(p=0.018), 2(p<0.001) and REM(p=0.002) are also significant difference in P value. This means control group’s HRV have higher level of chaos. This method is advantageous, instead of nasal flow and oral flow, only ECG channel measurement is required to identify sleep apnea syndrome, and possesses a superior extension for further research. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:47:44Z (GMT). No. of bitstreams: 1 ntu-102-R00543012-1.pdf: 3097091 bytes, checksum: 7db81b23c47ed8e8c53da24d916e2762 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 目錄
口試委員審定書 i 致謝 ii 中文摘要 iii Abstract v 目錄 vii 圖目錄 x 表目錄 xiii 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 論文架構 6 第二章 以心跳變異率診斷呼吸中止症相關背景 8 2.1 睡眠檢查 8 2.2 睡眠呼吸中止症 9 2.3 心電圖與心跳變異率 11 2.3.1 心跳變異率訊號前處理 14 第三章 龐加萊及相空間重構法 24 3.1 混沌概述 24 3.2 龐加萊圖及量化方法 28 3.3 相空間重構 30 3.3.1 平均互訊息 31 3.3.2 假鄰近點 34 3.4 李亞普諾指數 36 第四章 分析結果與討論 43 4.1 資料來源 44 4.2 龐加萊圖結果 46 4.3 相空間重建參數 50 4.4 相空間重建與李亞普諾指數分析 52 第五章 結論與未來展望 73 5.1 結論 73 5.2 未來展望 75 參考文獻 77 | |
dc.language.iso | zh-TW | |
dc.title | 以龐加萊及相空間重構法分析睡眠呼吸中止症心跳特徵 | zh_TW |
dc.title | ECG Markers for Obstructive Sleep Apnea Syndrome Based on Poincare Map and Reconstructed Phase Space | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 梅興(Hsing Mei) | |
dc.subject.keyword | 睡眠呼吸中止症,心跳變異率,睡眠階段,龐加萊,相空間重構,李亞普諾指數, | zh_TW |
dc.subject.keyword | Sleep Apnea Syndrome,Heart Rate Variability,Sleep Stages,Poincare map,Reconstructed Phase Space,Lyapunov Exponent, | en |
dc.relation.page | 81 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 3.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。