請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6111
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉進賢 | |
dc.contributor.author | Keng-Tsen Chiu | en |
dc.contributor.author | 邱耿岑 | zh_TW |
dc.date.accessioned | 2021-05-16T16:21:05Z | - |
dc.date.available | 2014-08-14 | |
dc.date.available | 2021-05-16T16:21:05Z | - |
dc.date.copyright | 2013-08-14 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-07-30 | |
dc.identifier.citation | [1] M. Kubicek, and V. Hlavacek, Numerical solution of nonlinear boundary value problems with applications. Prentice-Hall (1983).
[2] H. B. Keller, Numerical methods for two-point boundary value problems. New York, Dover (1992). [3] U. Ascher, R. Mattheij, and R. Russell, Numerical solution of boundary value problems for ordinary differential equations. Philadelphia, SIAM (1995). [4] D. D. Morrison, J. D. Riley, and J. F. Zancanaro, Multiple shooting method for two-point boundary value problems. Communications of the ACM, vol. 5, no. 12, pp. 613-614 (1962). [5] R. Holsapple, R. Venkataraman, and D. Doman, A modified simple method for solving two point boundary value problems. In: Proceedings of the IEEE Aerospace Conference, vol. 6 (2003). [6] C.-S. Liu, Cone of non-linear dynamical system and group preserving schemes. International Journal of Non-linear Mechanics vol. 36, no. 7, pp. 1047-1068 (2001). [7] C.-S. Liu, The Lie-group shooting method for nonlinear two-point boundary value problems exhibiting multiple solutions. CMES: Computer Modeling in Engineering & Sciences, vol. 13, pp. 149-163 (2006). [8] C.-S. Liu, Efficient shooting methods for the second order ordinary differential equations. CMES: Computer Modeling in Engineering & Sciences, vol. 15, pp. 69-86 (2006). [9] C.-S. Liu, The Lie-group shooting method for singularly perturbed two-point boundary value problems. CMES: Computer Modeling in Engineering & Sciences, vol. 15, no. 179-196 (2006). [10] F. Stetter, On a generalization of the midpoint rule. Mathematics of Computation, vol. 22, pp. 661-663 (1968). [11] C.-S. Liu, An efficient simultaneous estimation of temperature-dependent thermophysical properties. CMES: Computer Modeling in Engineering & Sciences, vol. 14, no. 77-90 (2006). [12] C.-S. Liu, L. W. Liu, and H. K. Hong, Highly accurate computation of spatial dependent heat conductivity and heat capacity in inverse thermal problem. CMES: Computer Modeling in Engineering & Sciences, vol. 17, pp. 1-18 (2007). [13] C.-S. Liu, The Lie-group shooting method for thermal stress evaluation through an internal temperature measurement. CMC: Computers, Materials & Continua, vol. 8, pp. 1-16 (2008). [14] C.-S. Liu, A Lie-group shooting method for computing eigenvalues and eigenfunctions of Sturm-Liouville problems. CMES: Computer Modeling in Engineering & Sciences, vol. 26, no. 157-168 (2008). [15] C.-S. Liu, The Lie-group shooting method for multiple-solutions of Falkner–Skan equation under suction–injection conditions. International Journal of Non-Linear Mechanics, vol. 43, no. 9, pp. 844-851 (2008). [16] C.-S. Liu, C.-W. Chang, and J.-R. Chang, A new shooting method for solving boundary layer equations in fluid mechanics. CMES: Computer Modeling in Engineering & Sciences, vol. 12, pp. 67-81 (2008). [17] C.-S. Liu, A Lie-group shooting method for post buckling calculations of elastica. CMES: Computer Modeling in Engineering & Sciences, vol. 30, pp. 1-16 (2008). [18] C.-S. Liu, A Lie-group shooting method for simultaneously estimating the time dependent damping and stiffness coefficients. CMES: Computer Modeling in Engineering & Sciences, vol. 27, pp. 137-149 (2008). [19] C.-S. Liu, Computing the eigenvalues of the generalized Sturm-Liouville problems based on the Lie-group SL(2,R). Journal of Computational and Applied Mathematics, vol. 236, pp. 4547-4560 (2012). [20] C.-S. Liu, The Lie-group shooting method for solving the Bratu equation. Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 11, pp. 4238-4249 (2012). [21] C.-S. Liu, Developing an SL(2,R) Lie-group shooting method for a singular ϕ-Laplacian in a nonlinear ODE. Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 9, pp. 2327-2339 (2012). [22] C.-S. Liu, The Lie-group shooting method for solving nonlinear singularly perturbed boundary value problems. Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 4, pp. 1506-1521 (2012). [23] C.-S. Liu, The Lie-group shooting method for solving multi-dimensional nonlinear boundary value problems. Journal of Optimization Theory and Applications, vol. 152, no. 2, pp. 468-495 (2012). [24] C.-S. Liu, The optimal control problem of nonlinear Duffing oscillator solved by the Lie-group adaptive method. CMES: Computer Modeling in Engineering & Sciences, vol. 86, pp. 171-197 (2012). [25] P. Cvitanovic, Group Theory. Exceptional Lie groups as invariance groups. (2008). [26] J. H. Gallier, Geometric methods and applications: For computer science and engineering. Springer (2001). [27] F. K. Tsou, E. M. Sparrow, and R. J. Goldstein, Flow and heat transfer in the boundary layer on a continuous moving surface. International Journal of Heat and Mass Transfer, vol. 10, no. 2 (1967). [28] C. L. Narayana, and P. RAMAMOORTHY, Compressible boundary-layer equations solved by the method of parametric differentiation. AIAA: American Institute of Aeronautics and Astronautics, vol. 10, pp. 1085-1086 (1972). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6111 | - |
dc.description.abstract | 邊值問題是許多工程及數學領域上很常見的問題,也有許多其他形式的問題經轉換而成邊值問題,如何有效精確地求解邊值問題是工程師很重要的課題。邊值問題當中的耦合邊值問題具有兩條或以上的方程式,方程式彼此之間交互影響,因為方程式的相依性,增加求解的難度。本文所使用的求解兩點邊值問題的方法為李群打靶法,其中運用的一步保群算法具有李群的封閉性、快速計算…等等的優點,已經精確地解決了許多二階或是三階的邊值問題。本論文利用李群打靶法的優點,將求解的問題推廣至三階與二階耦合邊值問題,推導一個新形式的李群打靶法,並結合不同李群來做求解,驗證李群打靶法在耦合邊值問題上,仍具有準確性。結合工程數學、廣義中值定理等等觀念,推導產生李群打靶法的步驟後,由常用的市售程式語言之一MATLAB來實行,以期推廣至更複雜的邊值問題,如高階耦合、多重耦合邊值問題…等等。 | zh_TW |
dc.description.abstract | In enginerring and mathematics, boundary value problems are common problems. There are many other form problems that are transformed to boundary value problems. How to accurately solve the boundary value problems is a very important subject for engineers. The coupled boundary value problem is one kind of boundary value problems with two or more equations, and there are interactions between equations. Because of the cross dependencies of equatioms, the difficulty of solving boundary value problems increases. In this study, the numerical solution for two-point boundary value problems is the Lie-group shooting method(LGSM). By using the advandtages of Lie-group`s closure property and quick calculation ,…etc, the one-step group preserving schemes has been used to accurately solve many second-order or third-order boundary value problems. In this paper ,the advantages of using the LGSM for solving the prombles will be extended to two and three-order coupled boundary value prombles. Developing a new form of LGSM, and combining different Lie-groups for solving the coupled boundary value problems. We will prove that the new form LGSM for solving coupled boundary value problem is accurate. After deducing the steps of using LGSM with engineering mathematics and Generalized mid-point rule…etc, we will use one of the commonly used commercial programming language MATLAB to implement steps. We expect LGSM to be extended to more complex boundary value problems, such as high-order coupled, multi-coupled boundary value problems…and so on. | en |
dc.description.provenance | Made available in DSpace on 2021-05-16T16:21:05Z (GMT). No. of bitstreams: 1 ntu-102-R00521230-1.pdf: 4801550 bytes, checksum: 669c2b77e2d542fa24cb308d52258997 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 第 一 章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 4 1.4 論文架構 4 第 二 章 保群算法 6 2.1 群 6 2.2 李群 9 2.3 李代數與指數映射 11 2.4 增廣動態系統 13 2.5 光錐構造 17 2.6 增廣動態系統 - 凱萊轉換(Cayley Transform) 20 2.7 增廣動態系統 - 指數映射 24 2.8 一步保群算法 28 2.9 數值積分方法 31 2.9.1 尤拉法 32 2.9.2 龍格-庫塔法 32 第 三 章 耦合邊界值問題的李群打靶法 35 3.1 打靶法 35 3.2 耦合邊值問題 36 3.3 李群 打靶法 36 3.3.1 耦合方程組轉換 36 3.3.2 李群 一步保群算法 38 3.3.3 李群打靶法 45 3.4 李群 與李群 打靶法 46 3.4.1 耦合方程中三階方程式換與李群 一步保群算法 46 3.4.2 李群 一步保群算法 - 廣義中值定理 47 3.4.3 李群 一步保群算法 - 光錐上兩點的李群映射 49 3.4.4 李群 打靶法 53 3.4.5 李群打靶法 58 3.5 李群打靶法流程 59 第 四 章 數值算例 62 4.1 方程式平移轉換 62 4.2 一步保群算法的區間長度 62 4.3 數值算例一 63 4.4 數值算例二 65 4.5 數值算例三 67 4.5.1 李群 打靶法 68 4.5.2 李群 與李群 打靶法 69 4.6 圖 71 第 五 章 結論與未來工作 84 參考文獻 87 | |
dc.language.iso | zh-TW | |
dc.title | "二階與三階耦合邊值問題的李群 SL(n,R) 打靶法之研究" | zh_TW |
dc.title | The Study of Two and Three-Order Coupled Boundary Value Problems by the Lie-group SL(n,R) Shooting Methods | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張建仁,陳永為 | |
dc.subject.keyword | 李群,李代數,保群算法,李群打靶法,耦合邊值問題,邊界層, | zh_TW |
dc.subject.keyword | Lie-group,Lie-algebra,group preserving schemes (GPS),Lie-group shooting method (LGSM),coupled boundary value problems,boundary layer, | en |
dc.relation.page | 89 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2013-07-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf | 4.69 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。