請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61091完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡偉博(Wei-Bor Tsai) | |
| dc.contributor.author | Ming-Chun Keng | en |
| dc.contributor.author | 耿明雋 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:45:56Z | - |
| dc.date.available | 2018-08-17 | |
| dc.date.copyright | 2013-08-17 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-12 | |
| dc.identifier.citation | [1] Ratner BD, Bryant SJ. Biomaterials: Where we have been and where we are going. Annual Review of Biomedical Engineering. 2004;6:41-75.
[2] Okajima Y, Saika S, Sawa M. Effect of surface coating an acrylic intraocular lens with poly(2-methacryloyloxyethyl phosphorylcholine) polymer on lens epithelial cell line behavior. Journal of Cataract & Refractive Surgery. 2006;32:666-671. [3] Nakabayashi N, Iwasaki Y. Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials. Bio-Medical Materials and Engineering. 2004;14:345-354. [4] Willis SL, Court JL, Redman RP, Wang JH, Leppard SW, O'Byrne VJ, et al. A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials. 2001;22:3261-3272. [5] Chen H, Yuan L, Song W, Wu Z, Li D. Biocompatible polymer materials: Role of protein-surface interactions. Progress in Polymer Science. 2008;33:1059-87. [6] Senaratne W, Andruzzi L, Ober CK. Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives. Biomacromolecules. 2005;6:2427-2448. [7] Bearinger JP, Terrettaz S, Michel R, Tirelli N, Vogel H, Textor M, et al. Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat Mater. 2003;2:259-264. [8] Hoffman AS. Non-fouling surface technologies. Journal of Biomaterials Science, Polymer Edition. 1999;10:1011-1014. [9] Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM. A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir. 2001;17:5605-5620. [10] Chapman RG, Ostuni E, Takayama S, Holmlin RE, Yan L, Whitesides GM. Surveying for Surfaces that Resist the Adsorption of Proteins. Journal of the American Chemical Society. 2000;122:8303-8304. [11] Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007;28:4192-4199. [12] Zhang Z, Cheng G, Carr LR, Vaisocherov H, Chen S, Jiang S. The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials. 2008;29:4719-4725. [13] Li G, Cheng G, Xue H, Chen S, Zhang F, Jiang S. Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials. 2008;29:4592-4597. [14] Li G, Xue H, Cheng G, Chen S, Zhang F, Jiang S. Ultralow fouling zwitterionic polymers grafted from surfaces covered with an initiator via an adhesive mussel mimetic linkage. The Journal of Physical Chemistry B. 2008;112:15269-15274. [15] Zhang Z, Zhang M, Chen S, Horbett TA, Ratner BD, Jiang S. Blood compatibility of surfaces with superlow protein adsorption. Biomaterials. 2008;29:4285-4291. [16] Dalsin JL, Hu BH, Lee BP, Messersmith PB. Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. Journal of the American Chemical Society. 2003;125:4253-4258. [17] Shen MM, Laura; Wagner, MS, Castner DG, Ratner BD, Horbett TA. PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. Journal of Biomaterials Science, Polymer Edition. 2002 13:367-390. [18] Luk YY, Kato M, Mrksich M. Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir. 2000;16:9604-9608. [19] http://cellbiology.med.unsw.edu.au/units/science/lecture0803.htm. [20] http://www.absoluteastronomy.com/topics/Cell_membrane. [21] Lewis AL. Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B: Biointerfaces. 2000;18:261-275. [22] Vermette P, Meagher L. Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms. Colloids and Surfaces B: Biointerfaces. 2003;28:153-198. [23] Lowe AB, McCormick CL. Synthesis and solution properties of zwitterionic polymers. Chemical Reviews. 2002;102:4177-4190. [24] Z hang Z, Chao T, Jiang S. Physical, chemical, and chemical-physical double network of zwitterionic hydrogels. The Journal of Physical Chemistry B. 2008;112:5327-5232. [25] Chang Y, Liao SC, Higuchi A, Ruaan RC, Chu CW, Chen WY. A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir. 2008;24:5453-5458. [26] Zhang Z, Chen S, Jiang S. Dual-functional biomimetic materials:nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules. 2006;7:3311-3315. [27] Chang Y, Chen S, Zhang Z, Jiang S. Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir. 2006;22:2222-2226. [28] Zhang Z, Chen S, Chang Y, Jiang S. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. The Journal of Physical Chemistry B. 2006;110:10799-10804. [29] Ladd J, Zhang Z, Chen S, Hower JC, Jiang S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules. 2008;9:1357-1361. [30] Rodriguez EC, Brynda E, Riedel T, Sedlakova Z, Houska M, Alles AB. Interaction of blood plasma with antifouling surfaces. Langmuir. 2009;25:6328-6333. [31] Yang W, Chen S, Cheng G, Vaisocherova H, Xue H, Li W, et al. Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir. 2008;24:9211-9214. [32] Vaisocherova H, Yang W, Zhang Z, Cao Z, Cheng G, Piliarik M, et al. Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Analytical Chemistry. 2008;80:7894-7901. [33] Zhang Z, Chao T, Chen S, Jiang S. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir. 2006;22:10072-10077. [34] Ueland PM, Holm PI, Hustad S. Betaine: a key modulator of one-carbon metabolism and homocysteine status. Clinical chemistry and laboratory medicine : CCLM / FESCC. 2005;43:1069-1075. [35] Chen L, Honma Y, Mizutani T, Liaw DJ, Gong JP, Osada Y. Effects of polyelectrolyte complexation on the UCST of zwitterionic polymer. Polymer. 2000;41:141-147. [36] Lowe AB, Billingham NC, Armes SP. Synthesis and properties of low-polydispersity poly(sulfopropylbetaine)s and their block copolymers. Macromolecules. 1999;32:2141-2148. [37] Liaw DJ, Huang CC. Dilute solution properties of poly(3-dimethyl acryloyloxyethyl ammonium propiolactone). Polymer. 1997;38:6355-6362. [38] Kathmann EE, White LA, McCormick CL. Water soluble polymers: effects of methylene versus propylene spacers in the pH and electrolyte responsiveness of zwitterionic copolymers incorporating carboxybetaine monomers. Polymer. 1997;38:879-886. [39] Lee WF, Huang GY. Poly(sulfobetaine)s and corresponding cationic polymers: synthesis and dilute aqueous solution properties of poly(sulfobetaine)s derived from acrylamide-maleic anhydride copolymer. Polymer. 1996;37:4389-4395. [40] Laschewsky A, Touillaux R, Hendlinger P, Vierengel A. Characterization of sulfobetaine monomers by nuclear magnetic resonance spectroscopy: a note. Polymer. 1995;36:3045-3049. [41] Weers JG, Rathman JF, Axe FU, Crichlow CA, Foland LD, Scheuing DR, et al. Effect of the intramolecular charge separation distance on the solution properties of betaines and sulfobetaines. Langmuir. 1991;7:854-867. [42] Schulz DN, Peiffer DG, Agarwal PK, Larabee J, Kaladas JJ, Soni L, et al. Phase behaviour and solution properties of sulphobetaine polymers. Polymer. 1986;27:1734-1742. [43] Malcolm B. Huglin MAR. Properties of poly[N-2-(methyacryloyloxy)ethyl-N,N-dimethyl-N-3-sulfopropylammonium betaine] in dilute solution. Die Makromolekulare Chemie. 1991;192:2433-2445. [44] Georgiev GS, Kamenska EB, Vassileva ED, Kamenova IP, Georgieva VT, Iliev SB, et al. Self-assembly, antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules. 2006;7:1329-1334. [45] Ishihara K NH, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption? Journal of Biomedical Materials Research. 1998;39:323–330. [46] He Y, Hower J, Chen S, Bernards MT, Chang Y, Jiang S. Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir : the ACS journal of surfaces and colloids. 2008;24:10358-10364. [47] Ma H, Hyun J, Stiller P, Chilkoti ,A. ldquo Non-fouling oligo(ethylene glycol)- functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Advanced Materials. 2004;16:338-341. [48] Ishihara K , Oshida H, Endo Y, Ueda T, Watanabe A, Nakabayashi N. Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. Journal of Biomedical Materials Research. 1992;26:1543-1552. [49] Huangfu Pb, Gong M, Zhang C, Yang S, Zhao J, Gong Yk. Cell outer membrane mimetic modification of a cross-linked chitosan surface to improve its hemocompatibility. Colloids and Surfaces B: Biointerfaces. 2009;71:268-274. [50] Reisch A, Voegel JC, Gonthier E, Decher G, Senger B, Schaaf P, et al. Polyelectrolyte multilayers capped with polyelectrolytes bearing phosphorylcholine and triethylene glycol groups: parameters influencing antifouling properties. Langmuir. 2009;25:3610-3617. [51] Salloum DS, Olenych SG, Keller TCS, Schlenoff JB. Vascular smooth muscle cells on polyelectrolyte multilayers: hydrophobicity-directed adhesion and growth. Biomacromolecules. 2005;6:161-167. [52] Olenych SG, Moussallem MD, Salloum DS, Schlenoff JB, Keller TCS. Fibronectin and cell attachment to cell and protein resistant polyelectrolyte surfaces. Biomacromolecules. 2005;6:3252-3258. [53] Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science (New York, NY). 2007;318:426-430. [54] Waite JH. Surface chemistry: mussel power. Nature Materials. 2008;7:8-9. [55] Ku SH, Park CB. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials. 2010;31:9431-9437. [56] Unsworth LD, Sheardown H, Brash JL. Protein resistance of surfaces prepared by sorption of end-thiolated poly(ethylene glycol) to gold: effect of surface chain density. Langmuir : the ACS journal of surfaces and colloids. 2005;21:1036-1041. [57] Lee H, Lee KD, Pyo KB, Park SY, Lee H. Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates. Langmuir : the ACS journal of surfaces and colloids. 2010;26:3790-3793. [58] Gao C, Li G, Xue H, Yang W, Zhang F, Jiang S. Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials. 2010;31:1486-1492. [59] Hohne DN, Chen HY, Lahann J, Solomon MJ. Near-surface structure of lithographic ink–fountain solution emulsions on model substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;326:138-146. [60] Choy KL. Chemical vapour deposition of coatings. Progress in Materials Science. 2003;48:57-170. [61] Gulbiński W. Deposition of thin films by sputtering. in: Pauleau Y, editor. Chemical physics of thin film deposition processes for micro- and nano-technologies: Springer Netherlands; 2002. p. 309-333. [62] Kolb HC, Finn MG, Sharpless KB. Click-Chemie: diverse chemische funktionalitat mit einer handvoll guter reaktionen. Angewandte Chemie. 2001;113:2056-2075. [63] Nandivada H, Chen HY, Bondarenko L, Lahann J. Reactive polymer coatings that “Click”. Angewandte Chemie International Edition. 2006;45:3360-3363. [64] Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discovery Today. 2003;8:1128-1137. [65] van Berkel SS, van Eldijk MB, van Hest JCM. Staudinger ligation as a method for bioconjugation. Angewandte Chemie International Edition. 2011;50:8806-8827. [66] Chen HY, Lai JH, Jiang X, Lahann J. Substrate-selective chemical vapor deposition of reactive polymer coatings. Advanced Materials. 2008;20:3474-3480. [67] Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE. Soft lithography in biology and biochemistry. Annual review of biomedical engineering. 2001;3:335-373. [68] Heskins M, Guillet JE. Solution properties of poly(N-isopropylacrylamide). Journal of Macromolecular Science: Part A - Chemistry. 1968;2:1441-1455. [69] Bae YH, Okano T, Kim SW. Temperature dependence of swelling of crosslinked poly(N,N′-alkyl substituted acrylamides) in water. Journal of Polymer Science Part B: Polymer Physics. 1990;28:923-936. [70] Ratner BD, Horbett T, Hoffman AS, Hauschka SD. Cell adhesion to polymeric materials: Implications with respect to biocompatibility. Journal of Biomedical Materials Research. 1975;9:407-422. [71] Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y. Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Die Makromolekulare Chemie, Rapid Communications. 1990;11:571-576. [72] Okano T, Yamada N, Sakai H, Sakurai Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). Journal of Biomedical Materials Research. 1993;27:1243-1251. [73] Takei YG, Aoki T, Sanui K, Ogata N, Sakurai Y, Okano T. Temperature-modulated platelet and lymphocyte interactions with poly(N-isopropylacrylamide)-grafted surfaces. Biomaterials. 1995;16:667-673. [74] Okano T, Kikuchi A, Sakurai Y, Takei Y, Ogata N. Temperature-responsive poly(N-isopropylacrylamide) as a modulator for alteration of hydrophilic/hydrophobic surface properties to control activation/inactivation of platelets. Journal of Controlled Release. 1995;36:125-133. [75] Dimitrov I, Jankova K, Hvilsted S. Synthesis of polystyrene-based random copolymers with balanced number of basic or acidic functional groups. Journal of Polymer Science Part A: Polymer Chemistry. 2010;48:2044-2052. [76] Lowe AB, Billingham NC, Armes SP. Synthesis of polybetaines with narrow molecular mass distribution and controlled architecture. Chemical Communications. 1996;0:1555-1556. [77] Ryckebusch A, Garcin D, Lansiaux A, Goossens JF, Baldeyrou B, Houssin R, et al. Synthesis, cytotoxicity, DNA interaction, and topoisomerase II inhibition properties of novel indeno[2,1-c]quinolin-7-one and indeno[1,2-c]isoquinolin-5,11-dione derivatives. Journal of medicinal chemistry. 2008;51:3617-3629. [78] Lutz JF. Copper-free azide–alkyne cycloadditions: new insights and perspectives. angewandte chemie International Edition. 2008;47:2182-2184. [79] Prucker O, Naumann CA, Ruhe J, Knoll W, Frank CW. Photochemical attachment of polymer films to solid surfaces via monolayers of benzophenone derivatives. Journal of the American Chemical Society. 1999;121:8766-8770. [80] Dmitrenko AV, Shadrina NE, Ivanchev SS, Ulinskaya NN, Volkov AM. Polymer—inorganic selective adsorbents for gas chromatography produced by graft polymerization. Journal of Chromatography A. 1990;520:21-31. [81] Hamann K, Laible R, Horn J. Polymer reactions on solid surfaces. in: Lee LH, editor. Adhesion Science and Technology: Springer US; 1976. 93-105. [82] Dorman G, Prestwich GD. Benzophenone photophores in biochemistry. Biochemistry. 1994;33:5661-5673. [83] Turro NJ, Gratzel M, Braun AM. Photophysical and photochemical processes in micellar systems. Angewandte Chemie International Edition in English. 1980;19:675-696. [84] Yamato M, Konno C, Utsumi M, Kikuchi A, Okano T. Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials. 2002;23:561-567. [85] Sauerbrey G. Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur mikrowagung. Zeitschrift fur Physik A Hadrons and Nuclei. 1959;155:206-222. [86] Chang Y, Yandi W, Chen W-Y, Shih Y-J, Yang C-C, Chang Y, et al. Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine. Biomacromolecules. 2010;11:1101-1110. [87] Gunawan RC, King JA, Lee BP, Messersmith PB, Miller WM. Surface presentation of bioactive ligands in a nonadhesive background using DOPA-tethered biotinylated poly(ethylene glycol). Langmuir : the ACS journal of surfaces and colloids. 2007;23:10635-10643. [88] Rehman I, Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. Journal of Materials Science: Materials in Medicine. 1997;8:1-4. [89] Graziano G. Hydrophobicity of benzene. Biophysical Chemistry. 1999;82:69-79. [90] Azzaroni O, Brown AA, Huck WTS. UCST Wetting Transitions of Polyzwitterionic Brushes Driven by Self-Association. Angewandte Chemie International Edition. 2006;45:1770-4. [91] Wu L, Guo Z, Meng S, Zhong W, Du Q, Chou LL. Synthesis of a zwitterionic silane and its application in the surface modification of silicon-based material surfaces for improved hemocompatibility. ACS applied materials & interfaces. 2010;2:2781-2788. [92] Takezawa T, Mori Y, Yoshizato K. Cell culture on a thermo-responsive polymer surface. Bio/technology (Nature Publishing Company). 1990;8:854-856. [93] Ebara M, Yamato M, Hirose M, Aoyagi T, Kikuchi A, Sakai K, et al. Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules. 2003;4:344-349. [94] Hyeong Kwon O, Kikuchi A, Yamato M, Okano T. Accelerated cell sheet recovery by co-grafting of PEG with PIPAAm onto porous cell culture membranes. Biomaterials. 2003;24:1223-1232. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61091 | - |
| dc.description.abstract | Nonfouling表面,由於能夠抵抗非專一性蛋白質的吸附,以及更進一步可抵抗細胞貼附,已經被廣泛使用在生醫材料和生物晶片上。在本研究第一部分首先將表面藉由化學氣相層積(Chemical Vapor Deposition ,CVD)將表面改質,利用合成方式製造出具有雙離子性的sulfobetaine & carboxybetaine的化合物。並利用其官能基在表面進行反應,使其能達到表面性質改變而達到抗生物性貼附。本研究主要探討藉由所合成之兩個單體與表面反應時的濃度差距,搭配利用石英微量天平測量其吸附量的變化與血清蛋白吸附和纖維母細胞(L929)貼附定量計算等方式來進行表面分析。
另外第二部分利用CVD 的改質表面,藉由Photo-cross-linking接上不同種類的聚合物,例如PEG,Poly NIPAAm等,讓表面上產生親/疏水性質,更進一步在表面同時接上兩種不同性質化合物,製造出細胞圖樣。 | zh_TW |
| dc.description.abstract | Nonfouling surface has been widely used in biomaterials and biosensors due to its potential resistance in non-specific adsorption and cell adhesion. In the first part of this study, first we modified substrate surface by the chemical vapor deposition (CVD) technology. Second , we synthesized the zwitterion sulfobetaine & carboxybetaine monomers, using the corresponding functional group grafting to the CVD coated surface change the character of surface to resisting bio adhesion. In this study, we investigated the surface influence between the concentration of zwitterion monomers by the using of XPS, the protein adsorption by QCM measurement, and the adhesion of fibroblast L929 cell.
In the second part of this study, we modified the CVD coated surface by the photo-cross-linking. By the using of photochemical conjugation, we make polymers conjugated to CVD surfaces. By grafting different polymer, such as poly(ethylene glycol) PEG and poly(N-isopropylacrylamide) (NIPAAm) , change the property of surface. Furthermore, we grafted different polymers on the same surface, producing the cell patterning. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:45:56Z (GMT). No. of bitstreams: 1 ntu-102-R00524065-1.pdf: 3506185 bytes, checksum: 9047b7003b7b3fa8fd686605a76f7cad (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Content
致謝 I 摘要 III Abstract V Content VII List of figures VII List of tables XV Chapter 1 Introduction 1 1.1 Nonfouling surface 3 1.2 Nonfouling materials 5 1.2.1 PEG (poly(ethylene glycol)) 5 1.2.2 Zwitterionic polymers 6 1.2.2.1 Phosphorylcholine (PC) 6 1.2.2.2 Sulfobetaine (SB) 13 1.2.2.3 Carboxybetaine (CB) 18 1.2.2.4 Characteristic of Zwitterionic polymers 19 1.2.2.5 Interaction of protein and zwitterions-modified surface 24 1.3 Surface modification by nonfouling materials 25 1.3.1 Self-assembled monolyer (SAM) 25 1.3.2 Graft polymerization 26 1.3.3 Hydrophobic interaction 27 1.3.4 Grafting to method 28 1.3.5 Layer-by-layer deposition 28 1.3.6 Catechol adhesion 30 1.3.7 Chemical Vapor Deposition (CVD) 33 1.4 Cell patterning 36 1.5 Research motivation 38 1.6 Research objective 40 Chapter 2 Materials and Methods 41 2.1 Chemicals 41 2.1.1 Chemicals for synthesizing 3-((3-azidopropyl)dimethylammonio)propane-1-sulfonate (SBAZ) 41 2.1.2 Chemicals for synthesizing (3-((3-(4-formylphenoxy)propyl)dimethylammonio)propanoate) (CBBA) 42 2.1.3 Polymers 42 2.1.4 Cell culture 42 2.2 Experimental instrument 43 2.3 Experimental materials 44 2.4 Solution formula 45 2.5 Methods 47 2.5.1 Synthesis of the 3-((3-azidopropyl)dimethylammonio) propane-1-sulfonate (SBAZ) 47 2.5.2 Synthesis of the 3-((3-(4-formylphenoxy)propyl) dimethylammonio)propanoate (CBBA) 48 2.5.3 Surface modification by click chemistry 49 2.5.4 Schiff base chemistry between CBBA and amine-surface 51 2.5.5 Photochemical conjugation of polymers to benzoyl surfaces 54 2.5.6 The procedure of cell patterning 56 2.5.7 XPS Analysis 57 2.5.8 Water Contact Angle (WCA) 58 2.5.9 QCM measurement 59 2.5.10 Cell culture 61 2.5.11 Statistical analysis 62 Chapter 3 The property and characterization of zwitterionic monomer 3-((3-azidopropyl)dimethylammonio)propane-1-sulfonate (SBAZ) 71 3.1 The NMR and MASS of SBAZ 71 3.2 Surface characterization 72 3.3 The amount of protein adsorption. 73 3.4 Cell adhesion experiment 74 3.5 Discussion 75 Chapter 4 The property and characterization of zwitterionic monomer (3-((3-(4-formylphenoxy)propyl) dimethylammonio)propanoate ) CBBA 87 4.1 The NMR and MASS of of CBBA 87 4.2 Surface characterization 88 4.3 The amount of protein adsorption. 89 4.4 Cell adhesion experiment 90 4.5 Discussion 91 Chapter 5 The cell patterning from multiple functional surface. 103 5.1 The nonfouling property of PEG grafting surface 103 5.2 The cell sheet property of Poly NIPAAm grafting surface 104 5.3 Cell patterning 104 5.4 Discussion 106 Chapter 6 Conclusions 113 Reference 115 | |
| dc.language.iso | en | |
| dc.subject | 細胞貼附 | zh_TW |
| dc.subject | 蛋白質吸附 | zh_TW |
| dc.subject | 生物惰性 | zh_TW |
| dc.subject | sulfobetaine | zh_TW |
| dc.subject | cell patterning | en |
| dc.subject | sulfobetaine methacrylate | en |
| dc.subject | cell adhesion | en |
| dc.subject | protein adsorption | en |
| dc.subject | photochemistry | en |
| dc.subject | nonfouling | en |
| dc.title | 兩性離子分子修飾於功能性化學氣相沈積表面
以抗細胞貼附之研究 | zh_TW |
| dc.title | Study of zwitterionic molecule-modified functional chemical vapor deposition surfaces for anti-cell adhesion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳賢燁(Hsien-Yeh Chen),黃聲東(Sheng-Tung Huang) | |
| dc.subject.keyword | 生物惰性,sulfobetaine,細胞貼附,蛋白質吸附, | zh_TW |
| dc.subject.keyword | nonfouling,sulfobetaine methacrylate,cell adhesion,protein adsorption,photochemistry,cell patterning, | en |
| dc.relation.page | 128 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
