請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61076
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳林祈(Lin-Chi Chen) | |
dc.contributor.author | Qian-Wen Chen | en |
dc.contributor.author | 陳倩雯 | zh_TW |
dc.date.accessioned | 2021-06-16T10:45:03Z | - |
dc.date.available | 2016-08-27 | |
dc.date.copyright | 2013-08-27 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-12 | |
dc.identifier.citation | 參考文獻
1. 陳定翔,鄭玉龍。2007。氫能源經濟之探討。資源與環境學術研討會,花蓮。159-160。 2. 姜妙娜。1991。幹細胞琥珀酸脫氫酶活力檢測條件的探討。大連醫學院學報。13(1):16-78。 3. 劉葵,耿玉珍,周杰,汪建民。2003。過氧化氫酶催化反應中以靛藍胭脂紅爲供氫體的研究。山東農業大學學報(自然科學版)。34 (2):278-280。 4. 王端好,張小裏。2007。氧化葡萄糖酸杆菌培養及生物轉化性能的研究。食品科學。28:332-334。 5. 王灼維,賈偉,Swee Lee Yap。2010。SYNAPT G2 HDMS 高清質譜性能特點及應用間介。5:20-24。 6. 鍾麗君,萬樂人,彭嘉柔。2005。Q-TOF Ultima Global質譜儀的簡介及應用。1:32-34。 7. A. Gupta, V. K. Singh, G. N. Qazi, and A. Kumar. 2001. Gluconobacter oxydans: its biotechnological application. J. Mol. Microbiol. Biotechnol. 3: 445-456. 8. A. J. Bard, and L. R. Faulkner. Electrochemical methods. New Jersey : John Wiley&Sons, Inc. 9. A. J. P. Martin, and R. L. M. Synge. 1941. A new form of chromatogram employing two liquid phases 1. A theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins. Biochem J. 35(12): 1358–1368. 10. A. N. Reshetilov, A.V. Lobanov, N. O. Morozova, S. H. Gordon, R. V. Greene, T. D. Leathers. 1998. Detection of ethanol in a two-component glucose/ethanol mixture using a nonselective sensor and a glucose enzyme electrode. Biosens. Bioelectron. 13: 789-793. 11. A. N. Reshetilov, M. V. Donova, D. V. Dovbnia, P. V. Il'iasov, A. M. Boronin, T. D. Leathers, and R. V. Greene. 1998. Membrane-bound dehydrogenases of whole cells as basis for sensors for determination of sugars, alchohols, and polyols. Biull. Eksp. Biol. Med. 126: 68-71. 12. A. T. Yahiro, S. M. Lee, and D. O. Kimble. 1964. Bioelectrochemistry: I. enzyme utilizing bio-fuel cell studies. Biochim. Biophys. Acta. 88(2): 375-383. 13. B. I. Rapoport, J. T. Kedzierski, and R. Sarpeshkar. 2012. A glucose fuel cell for implantable brain–machine interfaces. PLoS One. 7(6): e38436. 14. C. M. Whitehouse , R. N. Dreyer , M. Yamashita , and J. B. Fenn. 1985. Electrospray interface for liquid chromatographs and mass spectrometers. Analytical Chemistry. 57(3): 675-679. 15. C. Prust, M. Hoffmeister, H. Liesegang, A. Wiezer, W. F. Fricke, A. Ehrenreich, G. Gottschalk and U. Deppenmeier. 2005. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nature Biotechnology. 23(2): 195-200. 16. E. Katz, O. Lioubashevski, and I. Willner. 2005. Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: enhanced performance of biofuel cells. J. Am. Chem. Soc. 127 (11): 3979–3988. 17. F. W. Aston. 1927. A new mass-spectrograph and the whole number rule. Proc Roy Soc London (Series A). 115: 487–514. 18. G. H. Lathe, and C. R. J. Ruthven. 1956. The separation of substance and estimation of their relative molecular sizes by the use of columns of starch in water. Biochem J. 62: 665–674. 19. G. Milazzo, and M. Blank. Bioelectrochemistry I: biological redox reactions. Plenum Press. 20. G. Tayhas R. Palmore, Hugo Bertschy, Steven H. Bergens, and George M. Whitesides. 1998. A methanolrdioxygen biofuel cell that uses NADq-dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. Journal of Electroanalytical Chemistry. 443: 155–161. 21. H. Sors, P. Pradelles, and F. Dray. 1978. Analytical methods for thromboxane B2 measurement and validation of radioimmunoassay by gas liquid chromatography-mass spectrometry. Prostaglandins. 16(2): 277-290. 22. I. Nikov, and K. Paev. 1995. Palladium on alumina catalyst for glucose oxidation: reaction kinetics and catalyst deactivation. Catalysis Today. 24: 41-47. 23. J. Porath, and P. Flodin. 1959. Gel filtration: a method for desalting and group separation. Nature. 183: 1657-1659. 24. K. Matsushuta, E. Shinagawa, O. Adachi and M. Ameyama. 1979. Membrane-bound D-gluconate dehydrogenase from Pseudomonas aeruginosa. Biochem. 85: 1173-1181. 25. K. Zhu, L. Lu, L. Wei, D. Wei, T. Imanaka, and Q. Hua. 2011. Modification and evolution of gluconobacter oxydans for enhanced growth and biotransformation capabilities at low glucose concentration. Mol Biotechnol. 49: 56–64. 26. M. Ameyama. 1981. Purification and characterization of 2-keto-D-gluconate dehydrogenase from gluconobacter melanogenus. Agricultural & Biological Chemistry. 1079-1086. 27. M. C. Potter. 1912. Electrical effects accompanying the decomposition of organic compounds. The Royal Society. 84(571): 260-276. 28. M. Hikuma, M. Takeda, H. Matsuaka, and Karubez. 1995. Reagentless enzyme-based sensor using a gas-permeable membrane for determination of alcohols. Anal. Chim. Acta. 306: 209-15. 29. M. Makkee, A. P. G. Kieboom, and H. V. Bekkum. 1985. Combined action of an enzyme and a metal catalyst on the conversion of D-glucose/D-fructose mixtures into D-mannitol. Carbohydrate Research. 138: 237-245. 30. M. Smolander, V. G. Marko, and L. Gorton. 1995. Aldose-dehydrogenase-modified carbon paste electrodes as amperometric aldose sensors. Anal.Chim. Acta. 302: 233-240. 31. M. Tsvet. 1906. Adsorption analysis and chromatographic method. Applications on the chemistry of chlorophyll. Ber. Deutch. Bot. Ges. 24, 384. 32. M. Yamashitat, and J. B. Fenn. 1984. Electrospray ion source. Another variation on the free-jet theme. Journal of Physical Chemistry. 88(20): 4451-4459. 33. N. L. Akers, C. M. Moore, and S. D. Minteer. 2005. Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenase enzymes. Electrochimica Acta. 50: 2521–2525. 34. S. D. Sarker. Natural products isolation. New Jersey: Humana Press Inc. 35. S. Ramachandran, P. Fontanille, A. Pandey, and C. Larroche. 2006. Gluconic acid: properties, applications and microbial production. Food Technol. Biotechnol. 44: 185–195. 36. T. R. Covey , J. B. Crowther , E. A. Dewey , and J. D. Henion. 1985. Thermospray liquid chromatography/mass spectrometry determination of drugs and their metabolites in biological fluids. Anal. Chem, 57: 474-481. 37. T. Sugisawa and T. Hoshino. 2002. Purification and properties of Membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255*. Biosci. Biotechnol. Biochem. 66: 57–64. 38. U. K. Laemmli. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227 (5259): 680–685. 39. V. Krajewski, P. Simić, N. J. Mouncey, S. Bringer, H. Sahm, and M. Bott. 2010. Metabolic Engineering of Gluconobacter oxydans for Improved Growth Rate and Growth Yield on Glucose by Elimination of Gluconate Formation. Applied and Envirpnmental Microbiology. 4369–4376. 40. W. C. Still. 1978. Rapid chromatographic technique for preparative separations with moderate resolution. J. Org. Chem. 43(14): 2923-2925. 41. Y. Onal, S. Schimpf, and P. Claus. 2004. Structure sensitivity and kinetics of D-glucose oxidation to D-gluconic acid over carbon-supported gold catalysts. Journal of Catalysis. 223: 122–133. 42. http://bacmap.wishartlab.com/organisms/229#organism-links (2013/08/12) 43. http://labs.fhcrc.org/fero/Protocols/BioRad_Bradford.pdf (2013/08/12) 44. http://www.antpedia.com/corp/news-1260.html (2013/08/12) 45. http://www.bioon.com.cn/ewebeditor/uploadfile/201105/20110516214239390.pdf (2013/08/12) 46. https://www.gelifesciences.com/gehcls_images/GELS/Related%20Content/Files/1314729545976/litdoc18103411AB_20110830220703.pdf (2013/08/12) 47. http://www.interchim.fr/ft/C/CelluS.pdf (2013/08/12) 48. http://www.millipore.com/userguides.nsf/a73664f9f981af8c852569b9005b4eee/2c87c41fc1a622bd852579ce004baf72/$FILE/PR03711.pdf (2013/08/12) 49. http://www.sh-genmed.com/admincp/product/upload/120841294710103.2.pdf (2013/08/12) 50. http://www.smansy.org/lib/exe/fetch.php?media=public:superdex_75_200.pdf (2013/08/12) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61076 | - |
dc.description.abstract | 酵素型葡萄糖燃料電池(enzymatic glucose fuel cell)是直接利用酵素作為催化劑,氧化葡萄糖(glucose)釋放電子,從而獲取電能的一種功能設備,有望於作為醫療植入物、微型感測器及生物芯片的內置電源。在理論上,一分子葡萄糖完全氧化可産生24個電子,约產生5.50 W•h的能量。但目前成功研發出的酵素型葡萄糖燃料電池均為不完全氧化型,大多為使用葡萄糖氧化酵素(glucose oxidase,GOx)將葡萄糖經一步氧化成為葡萄糖酸-δ-内酯(glucono-δ-lactone),同時釋放2個電子。而氧化葡糖酸桿菌(Gluconobacter oxydans)具備不完全氧化葡萄糖的代謝途徑,與現有的葡萄糖燃料電池氧化利用葡萄糖途徑相容,可將葡萄糖進一步氧化成二酮葡糖酸(diketogluconic acid)並額外釋放6個電子。
本研究嘗試使用以甘露醇為主要碳源的基礎培養基和以葡萄糖為主要碳源的誘導培養基培養氧化葡糖酸桿菌,通過測定其生長曲線以及所得酵素群的葡萄糖氧化酵素活性和葡糖酸脫氫酵素活性,獲得較佳培養方案。嘗試在蛋白緩衝液中添加1%葡萄糖或1%葡糖酸(gluconic acid),發現添加1%葡糖酸有助於維持酵素群的活性。 對於沉澱部分,使用10% Triton X-100溶解細胞膜脂質並以酸性丙酮沉澱獲得溶解下來的膜聯蛋白JAM。生化檢測表明,JAM組分具有葡萄糖氧化酵素活性和葡糖酸脫氫酵素活性;電化學檢測表明,JAM組分能以黃素腺嘌呤二核苷酸(FAD)作為電子傳遞介質,在含有5 mM葡萄糖的模擬陽極溶液系統中氧化葡萄糖產生22.1 μA/cm2氧化電流訊號;能與GOx共同作用,使所產生的氧化電流訊號上升至38.3 μA/cm2,表明該提取純化所得的酵素群或能催化葡萄糖的進一步氧化。 對於可溶性蛋白部分,採用硫酸銨鹽析將其劃分為JAS35 與 JSA70兩組。生化檢測表明,JAS35與 JSA70兩個組分均具有葡萄糖氧化酵素活性和葡糖酸脫氫酵素活性,但JAS35組分的活性更強;電化學檢測表明,JAS35組分能以磷酸酰胺腺嘌呤二核苷酸(NADP)作為電子傳遞介質,在含有5 mM葡萄糖的模擬陽極溶液系統中氧化葡萄糖產生19.7 μA/cm2氧化電流訊號;能與GOx共同作用,使所產生的氧化電流訊號上升至36.3 μA/cm2,表明該提取純化所得的酵素群或能催化葡萄糖的進一步氧化。使用superdex 75凝膠過濾層析對JAS35組分進行提純獲得具有較高葡萄糖氧化效能的新酵素群JAS35(LC),其在含有5 mM葡萄糖的模擬陽極溶液系統中氧化葡萄糖所產生的氧化電流訊號提升至59.2 μA/cm2,為JAS35組分的6.63倍。JAS35(LC)組分與GOx共同作用產生的氧化電流訊號達到99.5 μA/cm2,經20天冷藏後仍保留一定催化活性,可氧化葡萄糖酸內酯、葡糖酸產生電流訊號。 最後,使用Synapt G2 HDMS蛋白質譜鑑定獲得JAM和JAS35酵素群中可能的有效組分。 | zh_TW |
dc.description.abstract | Enzymatic glucose fuel cell, a device that converts the glucose chemical energy into electricity through a chemical reaction with oxygen, is a potential power source for implantable devices, sensors and micro-chips. In theory, complete oxidation of one molecule glucose can produce 24 electrons and 5.50 W•h energy. However, glucose oxidation of enzymatic glucose fuel cells recently constructed can only convert glucose into glucono-δ-lactone by glucose oxidase (GOx) and produce 2 electrons. Gluconobacter oxydans is a kind of bacteria which can metabolize glucono-δ-lactone into diketogluconic acid without phosphorylation and release another 6 electrons.
In this paper, we cultured Gluconobacter oxydans in D-mannitol culture medium or in glucose culture medium for about one to week waiting for the optical density (A600) reaching maximum, measured and investigated the growth curves in order to finding the better culture method. We broke Gluconobacter oxydans by french press and dissolved the proteins in 0.1 M PBS containing 1% glucose or 1% gluconic acid to keep the enzymatic activity and investigated which one is better. For the precipitate, we used 10% Triton X-100 to dissolve the lipid of cytomembrane releasing the membrane-bound proteins and precipitate them with acidic acetone solution. The membrane-bound proteins we obtained are named JAM. By biochemical examining, we found that JAM has GOx activity and gluconic acid dehydrogenase (Gdh) activity. By electrochenical examining, we found that JAM can convert the glucose chemical energy into electricity with Flavin Adenine Dinucleotide (FAD) as electron media and produce about 22.1 μA/cm2 current density at 0.8 V in 5 mM Glucose solution. JAM can also catalyze glucose oxidation coefficiently with GOx and enlarge the current density into 38.3 μA/cm2. For the soluble proteins, we added 35% or 70% ammonium sulfate to salt out them into two parts, which are called JAS35 and JSA70 respectively. By biochemical examining, we found the GOx activity and Gdh activity of JAS35 are better than JAS 70. By electrochenical examining, we found that JAS35 can convert the glucose chemical energy into electricity with Nicotinamide Adenine Dinucleotide Phosphate (NADP) as electron media and produce about 19.7 μA/cm2 current density at 0.8 V in 5 mM Glucose solution. JAS35 can also catalyze glucose oxidation coefficiently with GOx and enlarge the current density into 36.3 μA/cm2. In order to obtaining enzymes which have higher glucose oxidation activity, we used Superdex 75 column for the JAS35 gel filtration chromatography and partially purified JAS35 to a new group of enzymes named JAS35(LC). By electrochenical examining, we found that JAS35(LC) can produce higher current density at 0.8 V in 5 mM Glucose solution than JAS35. It reached 59.2 μA/cm2 and becomes 6.63 times of the current density JAS35 produced. JAS35(LC) can also catalyze glucose oxidation with GOx more effectively, whose current density reached 99.5 μA/cm2. After storing in 4 ℃, the catalytic activity of JAS35(LC) retained. JAS35(LC) can convert the glucono-δ-lactone chemical energy and gluconic acid chemical energy into electricity too. Finally, we identificated the proteins in JAM and JAS35 by LC-MS/MS using Synapt G2 HDMS and found that effective enzyme constituent in JAM and JAS35. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:45:03Z (GMT). No. of bitstreams: 1 ntu-102-R00631046-1.pdf: 4713640 bytes, checksum: 51024b2bd569796bd1ddb6ef95cd7258 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 目錄
致謝 i 中文摘要 iii Abstract v 目錄 vii 圖目錄 xi 表目錄 xiv 符號說明 xvii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 1.3 研究目的 6 1.4 研究架構 7 第二章 文獻探討 8 2.1 氧化葡糖酸桿菌 8 2.1.1 氧化葡糖酸桿菌的生化特性及其相關應用研究 9 2.1.2 氧化葡糖酸桿菌與葡萄糖氧化 10 2.2 蛋白質的分群與純化 19 2.2.1 蛋白鹽析 19 2.2.2 凝膠過濾層析 19 2.3 蛋白質的質譜鑑定 22 第三章 研究方法 24 3.1 實驗儀器與設備 24 3.2 實驗藥品 26 3.3 氧化葡糖酸桿菌的培養 28 3.3.1 培養基的製備 28 3.3.2 生長曲線的測定 30 3.4 氧化葡糖酸桿菌的破菌 31 3.5 氧化葡糖酸桿菌可溶蛋白的鹽析分群 31 3.5.1 硫酸銨鹽析分群 31 3.5.2 透析除鹽 32 3.6 氧化葡糖酸桿菌膜聯蛋白的提取 32 3.6.1 10% Triton X-100分離膜及膜聯蛋白 32 3.6.2 沉澱提取膜聯蛋白 33 3.7氧化葡糖酸桿菌蛋白溶液的定量 38 3.7.1 蛋白溶液的濃縮 38 3.7.2 蛋白溶液蛋白濃度的測定 39 3.8氧化葡糖酸桿菌蛋白溶液酵素活性的測定 41 3.8.1 靛藍胭脂紅-分光光度法檢測葡萄糖氧化酵素活性 41 3.8.2 2, 6-二氯靛酚-分光光度法檢測葡糖酸脫氫酵素活性 43 45 3.9 生物陽極的電流訊號檢測 45 3.10 使用superdex 75管柱層析進一步提純蛋白 45 3.11十二烷基硫酸鈉聚丙烯酰胺凝膠電泳分離蛋白質 46 3.12液相層析-質譜聯用蛋白鑑定 49 3.12.1 蛋白樣品的in gel digestion 49 3.12.2 使用Synapt G2 HDMS鑑定peptide樣品 50 3.12.3 peptide樣品質譜數據的分析 52 第四章 結果與討論 53 4.1 氧化葡糖酸桿菌的培养 53 4.1.1 氧化葡糖酸桿菌的基礎培養 53 4.1.2 氧化葡糖酸桿菌的誘導培養 54 4.2氧化葡糖酸桿菌的蛋白溶液濃度檢測 55 4.3各組分蛋白溶液的葡萄糖氧化酵素活性檢測 56 4.3.1 過氧化氫(H2O2)濃度與A615的標準對應曲線的製作 56 4.3.2 蛋白溶液的葡萄糖氧化酵素活性測定測定 57 4.4各組分蛋白溶液的葡糖酸脫氫活性檢測 59 4.5各組分蛋白模擬陽極的電流信號的測定 60 4.5.1 JAM組分蛋白模擬陽極的電流信號的測定 60 4.5.2 JAS35組分蛋白模擬陽極的電流信號的測定 65 4.6凝膠過濾層析分離 70 4.6.1 蛋白流出時間與分子量大小的標準對應曲線的製作 70 4.6.2 JAM組分蛋白的凝膠過濾層析分離 71 4.6.3 JAS35組分蛋白的凝膠過濾層析分離 72 4.7膠過濾層析分群所得的各組分蛋白的模擬陽極的電流信號的測定 74 4.7.1 JAM層析分群所得的各組分蛋白的模擬陽極的電流信號的測定 74 4.7.2 JAS35層析分群所得的各組分蛋白的模擬陽極的電流信號的測定 77 4.8十二烷基硫酸鈉聚丙烯酰胺凝膠電泳 80 4.8.1分離JAM凝膠過濾層析分群所得的各組分蛋白 80 4.8.2分離JAS35凝膠過濾層析分群所得的各組分蛋白 81 4.9液相層析-質譜聯用蛋白鑑定 81 4.9.1 JAM組分蛋白的質譜鑑定 81 4.9.2 JAS35組分蛋白的質譜鑑定 88 4.10 JAS35(LC) 組分蛋白模擬陽極的電流信號的測定 95 第五章 結論與建議 104 5.1 結論 104 5.2 未來展望與建議 106 參考文獻 108 附錄 114 | |
dc.language.iso | zh-TW | |
dc.title | 利用氧化葡糖酸桿菌胞內活性蛋白結合葡萄糖氧化酵素應用於葡萄糖電催化之研究 | zh_TW |
dc.title | On the Combination of Glucose Oxidase and Active Proteins from Gluconobacter oxydans for Application in Glucose Electrocatalysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 何國川(Kuo-Chuan Ho),徐駿森(Chun-Hua Hsu),周楚洋(Chu-Yang Chou),陳力騏(Richie L. C. Chen) | |
dc.subject.keyword | 酵素型葡萄糖燃料電池,葡萄糖氧化酵素,氧化葡糖酸桿菌,蛋白分離與提純, | zh_TW |
dc.subject.keyword | Enzymatic Glucose Fuel Cell,Glucose Oxidase,Gluconobacter oxydans,Enzyme Isolation and Purification, | en |
dc.relation.page | 168 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-13 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 4.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。