Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61062Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蕭浩明(Hao-Ming Hsiao) | |
| dc.contributor.author | Chun-Ting Yeh | en |
| dc.contributor.author | 葉俊廷 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:44:14Z | - |
| dc.date.available | 2016-09-09 | |
| dc.date.copyright | 2013-09-09 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-12 | |
| dc.identifier.citation | [1] D. L. Hoyert and J. Xu, 'Deaths: preliminary data for 2011,' Natl Vital Stat Rep, vol. 61, pp. 1-65, 2012.
[2] D. o. H. Statistics Office, Executive Yuan, R.O.C (Taiwan), 2011 Statistics of Causes of Death, 2012. [3] H. M. Hsiao, H. T. Wang, and C. H. Lin, 'The Current Status and Future Development of Vascular Stenting Technology,' Journal of the Mechatronic Industry, vol. 342, pp. 65-75, 2011. [4] D. L. Fischman, M. B. Leon, D. S. Baim, R. A. Schatz, M. P. Savage, I. Penn, et al., 'A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators,' N Engl J Med, vol. 331, pp. 496-501, Aug 25 1994. [5] B. L. van der Hoeven, N. M. Pires, H. M. Warda, P. V. Oemrawsingh, B. J. van Vlijmen, P. H. Quax, et al., 'Drug-eluting stents: results, promises and problems,' Int J Cardiol, vol. 99, pp. 9-17, Mar 10 2005. [6] G. Nakazawa, A. V. Finn, M. Vorpahl, E. Ladich, R. Kutys, I. Balazs, et al., 'Incidence and Predictors of Drug-Eluting Stent Fracture in Human Coronary Artery: A Pathologic Analysis,' Journal of the American College of Cardiology, vol. 54, pp. 1924-1931, 11/17/ 2009. [7] J. E. Sousa, M. A. Costa, E. M. Tuzcu, J. S. Yadav, and S. Ellis, 'New frontiers in interventional cardiology,' Circulation, vol. 111, pp. 671-81, Feb 8 2005. [8] J. B. Hermiller, A. Raizner, L. Cannon, P. A. Gurbel, M. A. Kutcher, S. C. Wong, et al., 'Outcomes with the polymer-based paclitaxel-eluting TAXUS stent in patients with diabetes mellitus: the TAXUS-IV trial,' J Am Coll Cardiol, vol. 45, pp. 1172-9, Apr 19 2005. [9] http://www.kardionet.com/Images/Stent_Prinzip.jpg [10] http://img.medicalexpo.com/images_me/photo-g/duodenal-stent-78568-3972503.jpg [11] Y. P. Kathuria, 'Laser microprocessing of metallic stent for medical therapy,' Journal of Materials Processing Technology, vol. 170, pp. 545-550, Dec 30 2005. [12] S. K. Sudheer, V. P. M. Pillai, V. U. Nayar, Y. Pothiawala, and D. Kothwala, 'Micromachining of 316LVM stainless steel tubes using periodic acousto-optic modulation of pulsed Nd : YAG lasers for cardiovascular stent applications,' Journal of Microlithography Microfabrication and Microsystems, vol. 5, Apr-Jun 2006. [13] S. K. Sudheer, D. Kothwala, S. Prathibha, C. Engineer, A. Raval, and H. Kotadia, 'Laser microfabrication of L605 cobalt-chromium cardiovascular stent implants with modulated pulsed Nd:YAG laser,' Journal of Micro-Nanolithography Mems and Moems, vol. 7, Jul-Sep 2008. [14] H. G. Meng, J. H. Liao, Y. H. Zhou, and Q. M. Zhang, 'Laser micro-processing of cardiovascular stent with fiber laser cutting system,' Optics and Laser Technology, vol. 41, pp. 300-302, Apr 2009. [15] M. Sungur, A. Celiker, T. Karagoz, and K. Baysal, 'An unexpected complication during stent implantation for coarctation of the aorta: Longitudinal stent compression,' International Journal of Cardiology, vol. 134, pp. E29-E31, May 1 2009. [16] P. D. Williams, M. A. Mamas, K. P. Morgan, M. El-Omar, B. Clarke, A. Bainbridge, et al., 'Longitudinal stent deformation: a retrospective analysis of frequency and mechanisms,' Eurointervention, vol. 8, pp. 267-274, Jun 2012. [17] A. D. Robinson, T. L. Schreiber, M. A. Sobh, and C. L. Grines, 'Deformation, longitudinal shortening, and accordion of an ion stent,' J Interv Cardiol, vol. 24, pp. 493-5, Dec 2011. [18] Y. Chalet, F. Panes, B. Chevalier, J. P. Monassier, C. Spaulding, B. Lancelin, et al., 'Should We Avoid Ostial Implantations of Wiktor Stents,' Catheterization and Cardiovascular Diagnosis, vol. 32, pp. 376-379, Aug 1994. [19] K. Schmitz, D. Behrend, P. Behrens, and W. Schmidt, 'Comparative Studies of Different Stent Designs,' Progress in Biomedical Research, pp. 52-58, 1999/02 1999. [20] K. Schmitz, W. Schmidt, P. Behrens, D. Behrend, D. Lootz, and B. Graf, 'In-vitro examination of clinically relevant stent parameters,' PROGRESS IN BIOMEDICAL RESEARCH, vol. 5, pp. 197-203, 2000. [21] W. Schmidt, P. Behrens, D. Behrend, K. Schmitz, and R. Andresen, 'Experimental study of peripheral, balloon-expandable stent systems,' Progress in Biomedical Research, vol. 6, pp. 246-255, 2001. [22] W. Schmidt, R. Andresen, P. Behrens, and K.-P. Schmitz, 'Comparison of mechanical properties of peripheral self-expanding Nitinol and balloon-expandable stainless-steel stent,' presented at the Electronic Poster at the Annual Meeting and Postgraduate Course of the Cardiovascular and Interventional Radiological Society of Europe (CIRSE), Barcelona, Spain, 2004. [23] J. F. Dyet, W. G. Watts, D. F. Ettles, and A. A. Nicholson, 'Mechanical properties of metallic stents: how do these properties influence the choice of stent for specific lesions?,' Cardiovascular and interventional radiology, vol. 23, pp. 47-54, 2000. [24] J. A. Ormiston, S. R. Dixon, M. W. I. Webster, P. N. Ruygrok, J. T. Stewart, I. Minchington, et al., 'Stent longitudinal flexibility: A comparison of 13 stent designs before and after balloon expansion,' Catheterization and Cardiovascular Interventions, vol. 50, pp. 120-124, May 2000. [25] G. Finet and G. Rioufol, 'Coronary stent longitudinal deformation by compression: is this a new global stent failure, a specific failure of a particular stent design or simply an angiographic detection of an exceptional PCI complication?,' Eurointervention, vol. 8, pp. 177-+, Jun 2012. [26] N. Foin, C. Di Mario, D. Francis, and J. Davies, 'Stent flexibility versus concertina effect: Mechanism of an unpleasant trade-off in stent design and its implications for stent selection in the cath-lab,' International journal of cardiology, 2012. [27] C. Hanratty and S. Walsh, 'Longitudinal compression: a “new” complication with modern coronary stent platforms – time to think beyond deliverability?,' EuroIntervention, vol. 7, pp. 872-877, 2011. [28] E. Janakiraman, V. Subban, S. M. Victor, and A. S. Mullasari, 'Longitudinal deformation – Price we pay for better deliverability of coronary stent platforms,' Indian Heart Journal, vol. 64, pp. 518-520, 9// 2012. [29] K. L. Yew and Y. L. Cham, 'Longitudinal stent compression: a not so new percutaneous coronary angioplasty (PCI) complication,' Med J Malaysia, vol. 67, pp. 123-4, Feb 2012. [30] P. Mortier and M. De Beule, 'Stent design back in the picture: an engineering perspective on longitudinal stent compression,' Eurointervention, vol. 7, pp. 773-+, Nov 2011. [31] M. Gick, G. Leibundgut, A. Toma, M. Ferenc, T. Comberg, J. Rothe, et al., 'Longitudinal compression of third-generation drug-eluting stents: frequency and procedural predictors of the concertina phenomenon,' in EUROPEAN HEART JOURNAL, 2012, pp. 73-73. [32] G. Leibundgut, M. Gick, A. Toma, C. Valina, N. Loffelhardt, H. J. Buttner, et al., 'Longitudinal compression of the platinum-chromium everolimus-eluting stent during coronary implantation: Predisposing mechanical properties, incidence, and predictors in a large patient cohort,' Catheterization and Cardiovascular Interventions, vol. 81, pp. E206-E214, Apr 2013. [33] M. Abdel-Wahab, D. S. Sulimov, G. Kassner, V. Geist, R. Toelg, and G. Richardt, 'Longitudinal Deformation of Contemporary Coronary Stents: An Integrated Analysis of Clinical Experience and Observations from the Bench,' Journal of Interventional Cardiology, vol. 25, pp. 576-585, Dec 2012. [34] D. J. Kereiakes, D. Kandzari, C. Kimmelstiel, I. Meredith, J. Popma, G. Stone, et al., 'Longitudinal Stent Deformation: Quantitative Coronary Angiographic Analysis from the Perseus Wh and Platinum Wh Randomized Controlled Clinical Trials,' Journal of the American College of Cardiology, vol. 59, pp. E320-E320, Mar 27 2012. [35] D. J. Kereiakes, J. J. Popma, L. A. Cannon, D. E. Kandzari, C. D. Kimmelstiel, I. T. Meredith, et al., 'Longitudinal stent deformation: quantitative coronary angiographic analysis from the PERSEUS and PLATINUM randomised controlled clinical trials,' Eurointervention, vol. 8, pp. 187-195, Jun 2012. [36] M. Pitney, K. Pitney, N. Jepson, D. Friedman, T. Nguyen-Dang, J. Matthews, et al., 'Major stent deformation/pseudofracture of 7 Crown Endeavor/Micro Driver stent platform: incidence and causative factors,' Eurointervention, vol. 7, pp. 256-262, Jun 2011. [37] J. A. Ormiston, B. Webber, and M. W. I. Webster, 'Stent Longitudinal Integrity Bench Insights Into a Clinical Problem,' Jacc-Cardiovascular Interventions, vol. 4, pp. 1310-1317, Dec 2011. [38] H. M. Hsiao, 'Why Similar Stent Designs Cause New Clinical Issues,' Jacc-Cardiovascular Interventions, vol. 5, pp. 362-362, Mar 2012. [39] S. Prabhu, T. Schikorr, T. Mahmoud, J. Jacobs, A. Potgieter, and C. Simonton, 'Engineering assessment of the longitudinal compression behaviour of contemporary coronary stents,' Eurointervention, vol. 8, pp. 275-281, Jun 2012. [40] C. Dumoulin and B. Cochelin, 'Mechanical behaviour modelling of balloon-expandable stents,' J Biomech, vol. 33, pp. 1461-70, Nov 2000. [41] F. Migliavacca, L. Petrini, M. Colombo, F. Auricchio, and R. Pietrabissa, 'Mechanical behavior of coronary stents investigated through the finite element method,' Journal of Biomechanics, vol. 35, pp. 803-811, 6// 2002. [42] F. Migliavacca, L. Petrini, V. Montanari, I. Quagliana, F. Auricchio, and G. Dubini, 'A predictive study of the mechanical behaviour of coronary stents by computer modelling,' Medical Engineering & Physics, vol. 27, pp. 13-18, Jan 2005. [43] Shen Xiang, Yi Hong, and N. Zhong-hua, 'Finite element analysis of the longitudinal flexibility property of coronary stents,' Journal of Functional Materials, vol. 3(40), pp. 446-454, 2009. [44] P. Mortier, M. De Beule, P. Segers, P. Verdonck, and B. Verhegghe, 'Virtual bench testing of new generation coronary stents,' Eurointervention, vol. 7, pp. 369-376, Jul 2011. [45] J. Tambaca, S. Canic, M. Kosor, R. D. Fish, and D. Paniagua, 'Mechanical Behavior of Fully Expanded Commercially Available Endovascular Coronary Stents,' Texas Heart Institute Journal, vol. 38, pp. 491-501, Oct 2011. [46] J. A. Grogan, S. B. Leen, and P. E. McHugh, 'Comparing coronary stent material performance on a common geometric platform through simulated bench testing,' Journal of the Mechanical Behavior of Biomedical Materials, vol. 12, pp. 129-138, Aug 2012. [47] M. A. Mamas and P. D. Williams, 'Longitudinal stent deformation: insights on mechanisms, treatments and outcomes from the Food and Drug Administration Manufacturer and User Facility Device Experience database,' Eurointervention, vol. 8, pp. 196-204, Jun 2012. [48] P. Williams and M. Mamas, 'Longitudinal Stent Deformation: Insights On Mechanisms, Treatments and Outcomes From The Food And Drug Administration Manufacturer And User Facility Device Experience Database,' Journal of the American College of Cardiology, vol. 60, pp. B155-B155, Oct 23 2012. [49] M. Rockville, Non-Clinical Engineering Tests and Recommended Labeling for Intravascular Stents and Associated Delivery Systems: U.S. Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health, 2010. [50] H. M. Hsiao, Y. H. Chiu, K. H. Lee, and C. H. Lin, 'Computational modeling of effects of intravascular stent design on key mechanical and hemodynamic behavior,' Computer-Aided Design, vol. 44, pp. 757-765, Aug 2012. [51] D. Stoeckel, C. Bonsignore, and S. Duda, 'A survey of stent designs,' Minimally Invasive Therapy & Allied Technologies, vol. 11, pp. 137-147, Jul 01 2002. [52] I. B. A. Menown, R. Noad, E. J. Garcia, and I. Meredith, 'The Platinum Chromium Element Stent Platform: from Alloy, to Design, to Clinical Practice,' Advances in Therapy, vol. 27, pp. 129-141, Mar 2010. [53] H. M. Hsiao, A. Nikanorov, S. Prabhu, and M. K. Razavi, 'Respiration-Induced Kidney Motion on Cobalt-Chromium Stent Fatigue Resistance,' Journal of Biomedical Materials Research Part B-Applied Biomaterials, vol. 91B, pp. 508-516, Nov 2009. [54] A. C. Dunn, T. D. Zaveri, B. G. Keselowsky, and W. G. Sawyer, 'Macroscopic friction coefficient measurements on living endothelial cells,' Tribology Letters, vol. 27, pp. 233-238, 2007. [55] 王宏達, '氣球擴張式血管支架參數化設計與模擬,' 臺灣大學機械工程學研究所學位論文, pp. 1-59, 2011. [56] http://www.healthspablog.org/wp-content/uploads/2010/06/Health-Exercise-plays-an-important-role-in-maintaining-honorable-health..jpg [57] G. A. Holzapfel, G. Sommer, C. T. Gasser, and P. Regitnig, 'Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling,' American Journal of Physiology - Heart and Circulatory Physiology, vol. 289, pp. H2048-H2058, November 1, 2005 2005. [58] H. Zahedmanesh and C. Lally, 'Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis,' Med Biol Eng Comput, vol. 47, pp. 385-93, Apr 2009. [59] H. M. Loree, A. J. Grodzinsky, S. Y. Park, L. J. Gibson, and R. T. Lee, 'Static Circumferential Tangential Modulus of Human Atherosclerotic Tissue,' Journal of Biomechanics, vol. 27, pp. 195-204, Feb 1994. [60] M. Zilberman, K. D. Nelson, and R. C. Eberhart, 'Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents,' Journal of Biomedical Materials Research Part B-Applied Biomaterials, vol. 74B, pp. 792-799, Aug 2005. [61] J. M. Cho, I. S. Sohn, C. J. Kim, and I. K. Jang, 'Vulnerable Plaque Inside Stent,' Jacc-Cardiovascular Imaging, vol. 4, pp. 430-431, Apr 2011. [62] M. C. Gao, J. J. Gemmete, A. S. Pandey, and N. Chaudhary, 'Treatment of a intracranial stenosis with a vulnerable plaque under proximal flow reversal with balloon angioplasty and stent placement,' Journal of Neurointerventional Surgery, vol. 4, May 2012. [63] Y. L. Guo, Y. J. Yang, Z. Gao, and J. Qian, 'Local aneurysmal dilatation mimicking stent malapposition and concurrent vulnerable plaque within neointima of normal lumen after drug-eluting stent implantation: primary new findings from optical coherence tomography,' Chinese Medical Journal, vol. 125, pp. 1186-1188, Mar 20 2012. [64] P. Mortier, M. De Beule, G. Dubini, Y. Hikichi, Y. Murasato, and J. A. Ormiston, 'Coronary bifurcation stenting: insights from in vitro and virtual bench testing,' Eurointervention, vol. 6, pp. J53-J60, Dec 2010. [65] P. Mortier, M. De Beule, D. Van Loo, B. Verhegghe, and P. Verdonck, 'Finite element analysis of side branch access during bifurcation stenting,' Medical Engineering & Physics, vol. 31, pp. 434-440, May 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61062 | - |
| dc.description.abstract | 動脈粥狀硬化是造成心臟疾病的主要原因之一,以往通常使用開心手術或心臟繞道手術進行治療。近十年來,隨著醫療科技的進步,血管支架已經成為治療相關疾病的一大重要準則。血管支架是一種微型的網狀管形醫療器材,能夠藉由導管及導線植入人體,並在血管中擴張以維持該處血管的管徑大小。然而,在近期的冠狀動脈支架手術過程中,發生了所謂的支架軸向變形臨床現象。原因通常是在支架順利放置後,導管、導線或擴張支架用的氣球收回時,不慎與支架的結構發生擠壓,使支架局部或整體發生嚴重的變形扭曲。此現象可能導致血管的嚴重阻塞,甚至對病患的生命造成危害,因此在眾多醫學會議上都有著熱烈的討論。
本論文首先針對支架的設計進行參數化分析,透過有限元素軟體模擬 L-605 鈷鉻合金氣球擴張式支架的部署過程,並建立三種不同的台架試驗機械模型,分析支架受到軸向壓縮、軸向拉伸和側向彎曲負載時對應的變形狀況,再分別定義不同的性能指標,以量化各個設計參數相對於比較基準的變動對上述機械性質的影響。結果顯示當 Connector 的數量從兩個增加到三個的時候,抗壓勁度增加了十二倍、抗力高原幅值成長至三倍、抗拉勁度增加了十三倍之多;而改變 Connector 的分佈方式也讓抗壓勁度變為原先的二點五倍、抗力高原幅值成長了 80%、抗拉勁度成長至六倍左右。除此之外,提升單元結構的大小、Strut 的寬度或厚度也都能有效提升支架的軸向機械強度。最後也利用有限元素軟體,模擬支架在真實血管內發生軸向變形的情況,讓我們對於該現象有更精確的預測與認識。 透過本論文的結果,可以清楚了解各項設計參數對於支架軸向強度與可撓度的影響,對於未來支架設計有著更為全方面的參考資訊。此外,對於醫師以及臨床人員在未來選用支架時也能提供更完備的評估準則,以避免類似的臨床案例再次發生。 | zh_TW |
| dc.description.abstract | Atherosclerosis is one of main factors of cardiovascular diseases. In the past, open heart surgeries and bypass surgeries were usually performed for treatment. In the recent decade, intravascular stents have been a gold standard to treat such disorders with the advancement of medical technology. A stent is a tiny, tube-like, wire-mesh medical device which can be implanted into a human body via a catheter and a guide wire, and expanded in the artery to maintain the size of lumen. In recent percutaneous coronary interventions, however, the longitudinal stent deformation (LSD) occurred. This phenomenon occurs when the delivery devices such as catheter, guide wire, or post-dilation balloon conflicted against the deployed stent, causing entire or part of stent to dramatically distort. It could clog the artery severely and threaten the patient’s life, so related issues have soon become hot topics in western medical society.
In this paper, we implied the parametric analysis on stent design, and simulated the deployment of a L-605 cobalt-chromium balloon-expandable stent. Three different models were created to assess the deformation of the stent when the stent was exerted longitudinal compression, longitudinal elongation, and bending loads. Several performance indices were defined to quantify the effects of variation relative to the standard case of each design parameter on the mechanical behaviors. Results showed that when the number of connectors changed from two to three, the compression stiffness grew twelve times, the plateau amplitude rose to tripled, and the elongation stiffness grew thirteen times. Changing the arrangement of connectors made the compression stiffness grow to 2.5 times, the plateau amplitude rise 80 percentages, and the elongation stiffness grow to about six times. Besides, increasing strut width, strut thickness and the size of unit cell could also promote the longitudinal integrity of stents. Finally, we simulated LSD in a virtual artery by finite element software, and made a more accurate knowing and prediction to this phenomenon. These results can make us understand the influences of each design parameter to the longitudinal strength and flexibility of stents more clearly, and give reference information on more aspects in stent designing. In addition, the results can provide doctors and clinicians more comprehensive standard when they choose stents to prevent similar cases taking place. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:44:14Z (GMT). No. of bitstreams: 1 ntu-102-R00522828-1.pdf: 6167711 bytes, checksum: 8160a6df927737bb9f86bbdfa23d9a17 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目錄 v 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1 前言 1 1.2 研究目的 4 1.3 文獻回顧 6 1.4 研究內容與貢獻 8 第二章 支架參數化分析與物理模型 9 2.1 支架參數化設計 9 2.2 分析參數與幾何型式 11 2.2.1 基本設計參數 11 2.2.2 Connector 設計型式 12 2.2.3 Connector 數量 13 2.2.4 Crown 數量 14 2.2.5 Connector 分佈位置 15 2.2.6 單元結構大小 16 2.3 有限元素法分析 16 2.3.1 有限元素血管支架部署模擬 16 2.3.2 支架幾何與網格分割 17 2.3.3 材料性質與邊界條件設定 20 第三章 支架軸向壓縮分析 23 3.1 物理模型設定 23 3.2 抗壓性能指標 24 3.2.1 抗壓勁度 26 3.2.2 抗壓降伏點 27 3.2.3 抗力高原幅值 27 3.2.4 谷底反彈點 27 3.3 結果比較 28 3.3.1 基本設計參數 28 3.3.2 Connector 設計型式 32 3.3.3 Connector 數量 34 3.3.4 Crown 數量 36 3.3.5 Connector 分佈位置 37 3.3.6 單元結構大小 38 3.4 總結與討論 40 第四章 支架軸向拉伸分析 47 4.1 物理模型設定 47 4.2 抗拉性能指標 49 4.3 結果比較 50 4.3.1 基本設計參數 50 4.3.2 Connector 設計型式 55 4.3.3 Connector 數量 56 4.3.4 Crown 數量 58 4.3.5 Connector 分佈位置 59 4.3.6 單元結構大小 60 4.4 總結與討論 61 第五章 支架側向彎曲分析 67 5.1 物理模型設定 67 5.2 彎曲性能指標 69 5.2.1 抗彎勁度 69 5.2.2 第一波峰峰值和第二波峰峰值 71 5.3 結果比較 72 5.3.1 基本設計參數 72 5.3.2 Connector 設計型式 76 5.3.3 Crown 數量 77 5.3.4 Connector 分佈位置 78 5.3.5 單元結構大小 80 5.4 總結與討論 81 第六章 綜合性能評估 87 第七章 血管內支架軸向變形 91 7.1 物理模型設定 91 7.2 結果分析 95 7.3 討論 99 第八章 結論與未來展望 101 參考文獻 103 | |
| dc.language.iso | zh-TW | |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | 支架參數化設計 | zh_TW |
| dc.subject | 支架軸向變形 | zh_TW |
| dc.subject | 氣球擴張式支架 | zh_TW |
| dc.subject | 心血管疾病 | zh_TW |
| dc.subject | 支架可撓度 | zh_TW |
| dc.subject | flexibility | en |
| dc.subject | balloon-expandable stent | en |
| dc.subject | parametric design | en |
| dc.subject | finite element analysis | en |
| dc.subject | longitudinal stent deformation | en |
| dc.subject | cardiovascular disease | en |
| dc.title | 血管支架設計對於軸向強度與可撓度的影響 | zh_TW |
| dc.title | Effects of Stent Design on Longitudinal Strength and Flexibility | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭榮和(Jung-Ho Cheng),李貫銘(Kuan-Ming Li),蘇培珍(Pei-Chen Su) | |
| dc.subject.keyword | 心血管疾病,氣球擴張式支架,支架參數化設計,有限元素分析,支架軸向變形,支架可撓度, | zh_TW |
| dc.subject.keyword | cardiovascular disease,balloon-expandable stent,parametric design,finite element analysis,longitudinal stent deformation,flexibility, | en |
| dc.relation.page | 107 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-102-1.pdf Restricted Access | 6.02 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
