Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61054
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳君明
dc.contributor.authorTze-Hsiang Yenen
dc.contributor.author顏子翔zh_TW
dc.date.accessioned2021-06-16T10:43:46Z-
dc.date.available2014-08-16
dc.date.copyright2013-08-16
dc.date.issued2013
dc.date.submitted2013-08-13
dc.identifier.citation[1] S. S. Al-Riyami and K. G. Paterson, “Tripartite Authenticated Key Agreement Protocols from Pairings”, IMA Conference on Cryptography and Coding, Lecture Notes in Computer Science, Vol. 2898, pp. 332-359, 2003.
[2] Christophe Arene, Tanja Lange, Michael Naehrig, and Christophe Ritzenthaler, “Faster Computation of the Tate Pairing”, Journal of Number Theory, Vol. 131, Issue 5, pages 842-857, 2011.
[3] P. S. L. M. Barreto and M. Naehrig, “Pairing-Friendly Elliptic Curves of Prime Order”, Lecture Notes in Computer Science, Vol. 3897, pp. 319-331, 2006.
[4] R. Barua, R. Dutta, and P. Sarkar, “Extending Joux’s Protocol to Multi-Party Key Agreement”, INDOCRYPT 2003, Lecture Notes in Computer Science, Vol. 2904, pp. 205-217, 2003.
[5] S. A. Baset and H. G. Schulzrinne,“An Analysis of the Skype Peer-to-Peer Internet Telephony”, Protocol INFOCOM 25th IEEE International Conference on Computer Communications, pp. 1-11, 2006.
[6] Daniel J. Bernstein and Tanja Lange, “Faster Addition and Doubling on Elliptic Curves”, ASIACRYPT 2007, Lecture Notes in Computer Science, Vol. 4833, pp. 29-50, 2007.
[7] Daniel J. Bernstein and Tanja Lange, “Explicit-formulas Database”, http://www.hyperelliptic.org/EFD.
[8] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy Attribute-Based Encryption”, 2007 IEEE Symposium on Security and Privacy, pp. 321-334, 2007.
[9] P. Biondi and F. Desclaux, “Silver Needle in the Skype”, BlackHat Europe, 2006.
[10] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public Key Encryption with Keyword Search”, Eurocrypt 2004, Lecture Notes in Computer Science, Vol.3027, pp. 506-522, 2004.
[11] D. Boneh and M. Franklin, “Identity-based Encryption from the Weil Pairing”, Crypto 2001, Lecture Notes in Computer Science, Vol. 2139, pp. 213-229, 2001.
[12] D. Boneh, C. Gentry, and B. Waters, “Collusion Resistant Broadcast Encryption With Short Ciphertexts and Private Keys”, Crypto 2005, Lecture Notes in Computer Science, Vol. 3621, pp. 258-275, 2005.
[13] E. Brown, E. Errthum, and D. Fu, “Weil Pairing vs. Tate Pairing in IBE systems”, 2003.
[14] R. J. Chen, “Pairing-based Cryptography”, http://people.cs.nctu.edu.tw/~rjchen/Delta/PBC_2010.pdf
[15] C. Costello, “Pairings for Beginners” notes, 2013, http://www.craigcostello.com.au/pairings/PairingsForBeginners.pdf
[16] H. M. Edwards, “A Normal Form for Elliptic Curves”, Bulletin of the American Mathematical Society, Vol.44, pp. 393-422, 2007.
[17] M. S. Farash, M. A. Attari, and M. Bayat, “Security of Multiple-Key Agreement Protocols and Propose an Enhanced Protocol”, http://eprint.iacr.org/2011/634.pdf
[18] D. Fiore, R. Gennaro, and N. P. Smart, “Constructing Certificateless Encryption and ID-based Encryption from ID-based Key Agreement”, 4th international conference on Pairing-based cryptography, Lecture Notes in Computer Science, Vol. 6487, pp. 167-186, 2010.
[19] S. Galbraith, “Advances in Elliptic Curve”, Cambridge University Press, 2005.
[20] T. Icart, “How to Hash into Elliptic Curves”, CRYPTO 2009, Lecture Notes in Computer Science, Vol. 5677, pp. 303-316, 2009.
[21] A. Joux, “A One Round Protocol for Tripartite Diffie-Hellman”, Journal of Cryptology, Vol. 17, pp. 263-276, 2004.
[22] C. H. Lin, H. H. Lin, and J. C. Chang, “Multi-party Key Agreement for Secure Teleconferencing”, IEEE Conference on Systems, Man, and Cybernetics, 2006.
[23] S. Matsuda, N. Kanayama, F. Hess, and E. Okamoto, “Optimised Versions of the Ate and Twisted Ate Pairings”, the Eleventh IMA International Conference on Cryptography and Coding, Lecture Notes in Computer Science, Vol. 4887, pp. 302-312, 2007.
[24] V. S. Miller, “The Weil Pairing, and Its Efficient Calculation”, Journal of Cryptology, Vol.17, pp. 235-261, 2004.
[25] V. S. Miller, “Short Programs for Functions on Curves”, IBM Thomas J. Watson Research Center, 1986.
[26] M. Scott, “Implementing Cryptographic Pairings”, The 10th Workshop on Elliptic Curve Cryptography, 2006.
[27] Adi Shamir, “Identity-Based Cryptosystems and Signature Schemes”, CRYPTO 1984, Lecture Notes in Computer Science, 1984.
[28] J. H. Silverman, “The Arithmetic of Elliptic Curves (2nd Edition)”, Number 106 in Graduate Texts in Mathematics (GTM).
[29] D. Zhang, C. Zheng, H. Zhang, and H. Yu, “Identification and Analysis of Skype Peer-to-Peer Traffic”, Internet and Web Applications and Services (ICIW), Fifth International Conference, pp. 200-206, 2010.
[30] C. A. Zhao, F. Zhang, and J. Huang, “A note on the Ate pairing”, International Journal of Information Security, Vol. 7, Issue 6, pp. 379-382, 2008.
[31] http://magma.maths.usyd.edu.au/calc
[32] http://math.mit.edu/~drew/MNTCurves.html
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61054-
dc.description.abstract由於橢圓曲線雙線性Diffie-Hellman問題之計算困難度,藉由配對(pairing)實現之協定陸續被提出,例如:身份加密(ID-based encryption)及密鑰協議機制。密鑰協議機制為透過不安全的通訊管道,讓欲進行通聯的使用者協議出共同密鑰(common secret key);多方密鑰協議機制則是允許多位使用者在進行通聯之前,立即協議出加解密之共同密鑰。本論文將藉由雙線性配對函數提出一套密鑰協議機制,可以在通聯者低於四人時,透過一次訊息交換,同時完成身份驗證與密鑰協議。此外,該機制大幅降低使用者必須妥善保存的私鑰量,僅為橢圓曲線上的一點。我們將說明任何成功假扮公證第三方(TTP, trusted third party)的第三者,必定具備對應的私鑰資訊或超級強大的計算能力。我們也將透過magma的實作,說明此篇論文提出的機制確實可行。zh_TW
dc.description.abstractDue to the computational infeasibility of Bilinear Diffie-Hellman Problem on elliptic curves, many protocols based on pairings are constructed, such as ID-based encryption and key agreement. A key agreement protocol is a cryptographical primitive which allows participants to share a common secret key via insecure channel. In particular, a multiparty key agreement protocol manages arbitrary number of participants. In the thesis, we present a new authenticated multiparty key agreement protocol by using pairing. The authentication and the key agreement in our scheme can be done in just one round if the number of participants is less than four. Another advantage is that all participants only need to possess one piece of secret information of their own (a point on elliptic curve), hence the cost of secret protection is reduced in embedded systems. In security aspects, we show that if the system is compromised by Eve (a malicious user), then Eve either has secret information or has overwhelming computational ability to fool others by acting as the TTP (Trusted Third Party). We also show our scheme is efficient by using “magma”.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:43:46Z (GMT). No. of bitstreams: 1
ntu-102-R97221048-1.pdf: 567726 bytes, checksum: e896f5553e4f6fa75d9fb4fdbd830691 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures vi
1. Introduction 1
2. Basics of Pairings 3
2.1 Admissible Pairing 3
2.2 Practical Bilinear Maps 3
2.2.1 Weil Pairing 3
2.2.2 Tate Pairing 4
2.2.3 Ate pairing 5
2.2.4 Eta pairing 5
2.2.5 Bilinear Diffie-Hellman Assumption (BDHA) 6
3. Feasibility of Pairings 7
4. Some Applications of Pairings 14
4.1 Identity-Based Encryption 14
4.2 Searchable Encryption 15
4.3 Broadcast Encryption 17
4.4 Attribute-Based Encryption 19
5. Pairing-Based Key Agreement Scheme 24
5.1 KASSS in Two Parties 24
5.2 Extension to Tripartite Authenticated Key Agreement 26
5.3 Extension to Multiparty Authenticated Key Agreement 28
6. Security Analysis 33
6.1 Authentication 33
6.1.1 Resistance to Man-in-the-Middle Attack 33
6.1.2 Hardness in Solving ECDLP and DLP 34
6.2 Key Agreement 34
7. Comparison and Experimental Results 36
7.1 Comparison 36
7.2 Experimental Results 37
8. Conclusion and Future Work 39
References 40
Appendix 44
dc.language.isoen
dc.subject橢圓曲線離散對數zh_TW
dc.subject橢圓曲線密碼學zh_TW
dc.subject多方密鑰協議機制zh_TW
dc.subject雙線性配對函數zh_TW
dc.subjectMultiparty Key Agreement Protocolen
dc.subjectElliptic Curve Discrete Logarithm Problemen
dc.subjectBilinear Pairingen
dc.subjectElliptic Curve Cryptographyen
dc.title橢圓曲線密碼配對與其應用zh_TW
dc.titlePairing-based Elliptic Curve Cryptography and Its Applicationsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳榮傑,楊柏因
dc.subject.keyword雙線性配對函數,多方密鑰協議機制,橢圓曲線密碼學,橢圓曲線離散對數,zh_TW
dc.subject.keywordBilinear Pairing,Multiparty Key Agreement Protocol,Elliptic Curve Cryptography,Elliptic Curve Discrete Logarithm Problem,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2013-08-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
554.42 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved