請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61048完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周泰立(Tai-Li Chou) | |
| dc.contributor.author | Yi-Wen Wang | en |
| dc.contributor.author | 王怡文 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:43:25Z | - |
| dc.date.available | 2018-08-27 | |
| dc.date.copyright | 2013-08-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-13 | |
| dc.identifier.citation | Alvarez, P., & Squire, L. R. (1994). Memory consolidation and the medial temporal lobe: A simple network model. Proceedings of the National Academy of Sciences, 91, 7041–7045.
Amaro, E., & Barker, G. J. (2006). Study design in fMRI: Basic principles. Brain and Cognition, 60, 220–232. Anderson, J. R., Byrne, D., Fincham, J. M., & Gunn, P. (2008). Role of prefrontal and parietal cortices in associative learning. Cerebral Cortex, 18, 904–914. Bastin, C., & Van der Linden, M. (2003). The contribution of recollection and familiarity to recognition memory: A study of the effects of test format and aging. Neuropsychology, 17, 14–24. Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767–2796. Blumenfeld, R. S., & Ranganath, C. (2007). Prefrontal cortex and long-term memory encoding: An integrative review of findings from neuropsychology and neuroimaging. The Neuroscientist, 13, 280–291. Buckner, R. L., Kelley, W. M., & Petersen, S. E. (1999). Frontal cortex contributes to human memory formation. Nature Neuroscience, 2, 311–314. Cabeza, R., Ciaramelli, E., Olson, I. R., & Moscovitch, M. (2008). The parietal cortex and episodic memory : An attentional account. Nature Reviews Neuroscience, 9, 613–625. Cappa, S. F., Perani, D., Schnur, T., Tettamanti, M., & Fazio, F. (1998). The effects of semantic category and knowledge type on lexical-semantic access: A PET study. NeuroImage, 8, 350–359. Chao, L. L., Haxby, J. V, & Martin, A. (1999). Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nature Neuroscience, 2, 913–919. Chou, T.-L., Chen, C.-W., Wu, M.-Y., & Booth, J. R. (2009). The role of inferior frontal gyrus and inferior parietal lobule in semantic processing of Chinese characters. Experimental Brain Research, 198, 465–475. Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A., Moritz, C. H., … Meyerand, M. E. (2001). Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. American Journal of Neuroradiology, 22, 1326–1333. Draganski, B., Gaser, C., Kempermann, G., Kuhn, H. G., Winkler, J., Buchel, C., & May, A. (2006). Temporal and spatial dynamics of brain structure changes during extensive learning. The Journal of Neuroscience, 26, 6314–6317. Dudai, Y. (2004). The neurobiology of consolidations, or, how stable is the engram? Annual Review of Psychology, 55, 51–86. Duncan, C. P. (1949). The retroactive effect of electroshock on learning. Journal of Comparative and Physiological Psychology, 42, 32–44. Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. NeuroImage, 26, 471–479. Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340–347. Floel, A., Poeppel, D., Buffalo, E. A., Braun, A., Wu, C. W.-H., Seo, H.-J., … Cohen, L. G. (2004). Prefrontal cortex asymmetry for memory encoding of words and abstract shapes. Cerebral Cortex, 14, 404–409. Frankland, P. W., & Bontempi, B. (2005). The organization of recent and remote memories. Nature Reviews Neuroscience, 6, 119–130. Friedman, D., & Johnson, R. (2000). Event-related potential (ERP) studies of memory encoding and retrieval: A selective review. Microscopy Research and Technique, 51, 6–28. Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2, 189–210. Gerard, R. W. (1955). Biological roots of psychiatry. Science, 122, 225–230. Greicius, M. D., Krasnow, B., Boyett-Anderson, J. M., Eliez, S., Schatzberg, A. F., Reiss, A. L., & Menon, V. (2003). Regional analysis of hippocampal activation during memory encoding and retrieval: FMRI study. Hippocampus, 13, 164–174. Henson, R. N., Rugg, M. D., Shallice, T., Josephs, O., & Dolan, R. J. (1999). Recollection and familiarity in recognition memory: An event-related functional magnetic resonance imaging study. The Journal of Neuroscience, 19, 3962–3972. Hills, M., & Armitage, P. (1979). The two-period cross-over clinical trial. British Journal of Clinical Pharmacology, 8, 7–20. Igaz, L. M., Vianna, M. R. M., Medina, J. H., & Izquierdo, I. (2002). Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning. The Journal of Neuroscience, 22, 6781–6789. Izquierdo, I. (1989). Different forms of post-training memory processing. Behavioral and Neural Biology, 51, 171–202. Jones, B., & Kenward, M. G. (2003). Design and analysis of cross-over trials (2nd ed.). Boca Raton, FL: Chapman and Hall/CRC. Kapur, S., Craik, F. I., Tulving, E., Wilson, a a, Houle, S., & Brown, G. M. (1994). Neuroanatomical correlates of encoding in episodic memory: Levels of processing effect. Proceedings of the National Academy of Sciences, 91(6), 2008–2011. Krivanek, J. A. (1971). Facilitation of avoidance learning by pentylenetetrazol as a function of task difficulty, deprivation and shock level. Psychopharmacologia, 20, 213–229. Kuhl, B. A., Bainbridge, W. A., & Chun, M. M. (2012). Neural reactivation reveals mechanisms for updating memory. The Journal of Neuroscience, 32, 3453–3461. Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (De)constructing the N400. Nature Reviews Neuroscience, 9, 920–933. Laws, K. R., Adlington, R. L., Moreno-Martinez, F. J., & Tim M. Gale. (2010). Category-specificity : Evidence for modularity of mind (1st ed.). Hauppauge, NY: Nova Science Publishers. Leveroni, C. L., Seidenberg, M., Mayer, A. R., Mead, L. A., Binder, J. R., & Rao, S. M. (2000). Neural systems underlying the recognition of familiar and newly learned faces. The Journal of Neuroscience, 20, 878–886. Ling, D. S. F., Benardo, L. S., Serrano, P. A., Blace, N., Kelly, M. T., Crary, J. F., & Sacktor, T. C. (2002). Protein kinase Mzeta is necessary and sufficient for LTP maintenance. Nature Neuroscience, 5, 295–296. Maguire, E. A., Woollett, K., & Spiers, H. J. (2006). London taxi drivers and bus drivers: A structural MRI and neuropsychological analysis. Hippocampus, 16, 1091–1101. Marsh, R. L., Landau, J. D., & Hicks, J. L. (1996). The postinformation effect and reductions in retroactive interference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1296–1303. Marshall, L., & Born, J. (2007). The contribution of sleep to hippocampus-dependent memory consolidation. Trends in Cognitive Sciences, 11, 442–450. McGaugh, J. L. (1966). Time-dependent processes in memory storage. Science, 153, 1351–1358. McGaugh, J. L. (2000). Memory -- a century of consolidation. Science, 287, 248–251. Menon, V., Boyett-Anderson, J. M., Schatzberg, A. F., & Reiss, A. L. (2002). Relating semantic and episodic memory systems. Cognitive Brain Research, 13, 261–265. Molle, M., & Born, J. (2011). Slow oscillations orchestrating fast oscillations and memory consolidation. In E. J. W. Van Someren, Y. D. Van Der Werf, P. R. Roelfsema, H. D. Mansvelder, & F. H. L. da Silva (Eds.), Slow brain oscillations of sleep, resting state and vigilance (pp. 93–110). Amsterdam, Nederlands: Elsevier. Naya, Y., Yoshida, M., & Miyashita, Y. (2003). Forward processing of long-term associative memory in monkey inferotemporal cortex. The Journal of Neuroscience, 23, 2861–2871. Newton, J. M., & Wickens, D. D. (1956). Retroactive inhibition as a function of the temporal position of the interpolated learning. Journal of Experimental Psychology, 51, 149–154. Nguyen, P. V, & Kandel, E. R. (1996). A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. The Journal of Neuroscience, 16, 3189–3198. Nyberg, L., Cabeza, R., & Tulving, E. (1996). PET studies of encoding and retrieval: The HERA model. Psychonomic Bulletin & Review, 3, 135–148. Oliverio, A. (1968). Effects of nicotine and strychnine on transfer of avoidance learning in the mouse. Life Sciences, 7, 1163–1167. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98, 676–682. Ranganath, C., & Knight, R. T. (2002). Prefrontal cortex and episodic memory : Integrating findings from neuropsychology and functional brain imaging. In A. Parker, E. L. Wilding, & T. J. Bussey (Eds.), The cognitive neuroscience of memory: Encoding and retrieval (pp. 83–100). New York, NY: Psychology Press. Ritchey, M., Wing, E. A., Labar, K. S., & Cabeza, R. (2012). Neural similarity between encoding and retrieval is related to memory via hippocampal interactions. Cerebral Cortex [Epub ahead of print]. doi:10.1093/cercor/bhs258 Rugg, M. D., Johnson, J. D., Park, H., & Uncapher, M. R. (2008). Encoding-retrieval overlap in human episodic memory: A functional neuroimaging perspective. Progress in brain research, 169, 339–52. Sakai, K., & Miyashita, Y. (1991). Neural organization for the long-term memory of paired associates. Nature, 354, 152–155. Shrager, Y., & Squire, L. R. (2009). Medial temporal lobe function and human memory. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (4th ed., pp. 675–690). Cambridge, MA: The MIT Press. Srull, T. K., Lichtenstein, M., & Rothbart, M. (1985). Associative storage and retrieval processes in person memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11, 316–345. Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31, 137–149. Stern, C. E., Corkin, S., Gonzalez, R. G., Guimaraes, A. R., Baker, J. R., Jennings, P. J., … Rosen, B. R. (1996). The hippocampal formation participates in novel picture encoding: Evidence from functional magnetic resonance imaging. Proceedings of the National Academy of Sciences, 93, 8660–8665. Sutherland, G. R., & McNaughton, B. (2000). Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Current Opinion in Neurobiology, 10, 180–186. Takashima, A., Petersson, K. M., Rutters, F., Tendolkar, I., Jensen, O., Zwarts, M. J., … Fernandez, G. (2006). Declarative memory consolidation in humans: A prospective functional magnetic resonance imaging study. Proceedings of the National Academy of Sciences, 103, 756–761. Takashima, A., Nieuwenhuis, I. L. C., Jensen, O., Talamini, L. M., Rijpkema, M., & Fernandez, G. (2009). Shift from hippocampal to neocortical centered retrieval network with consolidation. The Journal of Neuroscience, 29, 10087–10093. Tambini, A., Ketz, N., & Davachi, L. (2010). Enhanced brain correlations during rest are related to memory for recent experiences. Neuron, 65, 280–290. Tulving, E., & Psotka, J. (1971). Retroactive inhibition in free recall: Inaccessibility of information available in the memory store. Journal of Experimental Psychology, 87, 1–8. Vincent, J. L., Snyder, A. Z., Fox, M. D., Shannon, B. J., Andrews, J. R., Raichle, M. E., & Buckner, R. L. (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory network. Journal of Neurophysiology, 96, 3517–3531. Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9, 445–453. Westerberg, C. E., Paller, K. A., Weintraub, S., Mesulam, M. M., Holdstock, J. S., Mayes, A. R., & Reber, P. J. (2006). When memory does not fail: Familiarity-based recognition in mild cognitive impairment and Alzheimer’s disease. Neuropsychology, 20, 193–205. Wixted, J. T. (2004). The psychology and neuroscience of forgetting. Annual Review of Psychology, 55, 235–269. Yamashita, K., Hirose, S., Kunimatsu, A., Aoki, S., Chikazoe, J., Jimura, K., … Konishi, S. (2009). Formation of long-term memory representation in human temporal cortex related to pictorial paired associates. The Journal of Neuroscience, 29, 10335–10340. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61048 | - |
| dc.description.abstract | 記憶固化假說認為,新習得的記憶痕跡隨時間而逐漸穩定,因此在學習活動過後不久,記憶處於較不穩定的狀態,也較易於被減弱或加強。本研究在目標學習之後加入介入學習,並操弄兩學習活動之間的時間間隔(立即或延遲),以測試立即介入或延遲介入對記憶固化影響的差異,藉此觀察記憶固化期間,海馬到大腦皮質間連結隨時間的變化特性。記憶固化期間,主要是由海馬引導先前學習經驗在新皮質區域中重現。過去研究發現,左側額葉下回(LIFG)和左側頂葉下部(LIPL)與記憶登錄及提取有關,且登錄與提取時的腦部活動具有相似性;然而介於記憶登錄及提取之間的記憶固化活動,則缺乏相關的人類研究。本研究之貢獻在於彌補此缺憾,提供記憶固化期間海馬、左側額葉下回和左側頂葉下部三者間的互動證據,藉由靜息態功能性連結,觀察海馬與新皮質間的互動,並以認知作業期間的功能性磁振造影,觀察記憶登錄及提取的腦部活動。本研究發現(1)立即介入比延遲介入更能有效地加強目標學習之記憶固化過程;(2)左側額葉下回在記憶登錄時的活動,與記憶固化期間海馬到額葉下回的互動有關,並藉此影響海馬與左頂葉下部間的互動。 | zh_TW |
| dc.description.abstract | Memory consolidation hypothesis states that a newly-acquired memory trace stabilizes overtime, thus a memory trace is labile and could be easily disrupted or improved shortly after learning activity. This study used the time-dependent (delayed versus immediate) intervention to probe the difference between the immediately affected and later affected memory consolidation, in order to show the time-dependent nature of connectivity change from the hippocampus to cortical regions during memory consolidation. During memory consolidation, the hippocampus guides the replay of prior learning events across the neocortical regions. Previous studies have related the left inferior frontal gyrus (LIFG) and the left inferior parietal lobule (LIPL) to memory encoding and retrieval, or have found similar patterns of brain activities between encoding and retrieval in these regions. The present study bridges the gap between encoding and retrieval among previous human studies, and shows evidence of the interaction among the hippocampus, the LIFG and the LIPL during memory consolidation. This study used resting-state functional connectivity to observe hippocampal-neocortical interaction, and task-related fMRI to observe the brain activity during encoding and retrieval. Findings in this study suggest that (1) the process of memory consolidation for the target learning may be more effectively enhanced by the immediate intervening learning as compared to the delayed intervening learning; (2) the activity of the LIFG during encoding may be related to the hippocampal-LIFG interaction during memory consolidation, and in this way contributes to the hippocampal-LIPL interaction. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:43:25Z (GMT). No. of bitstreams: 1 ntu-102-R99227121-1.pdf: 800499 bytes, checksum: f56d60a61c4365b5a272c18ba999aaf4 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii Introduction 1 Methods 7 Results 19 Discussion 24 References 39 Tables 50 Figures 54 | |
| dc.language.iso | en | |
| dc.subject | 記憶 | zh_TW |
| dc.subject | 固化 | zh_TW |
| dc.subject | 靜息態功能性磁振造影 | zh_TW |
| dc.subject | 功能性連結 | zh_TW |
| dc.subject | memory | en |
| dc.subject | consolidation | en |
| dc.subject | resting-state fMRI | en |
| dc.subject | functional connectivity | en |
| dc.title | 學習後之介入活動對記憶形成的促進效果:探討時間因素對記憶提取及靜息態大腦功能性連結的影響 | zh_TW |
| dc.title | Facilitation of Memory Formation by Post-Learning Intervention: A Time-Dependent Effect in Recall and Brain Connectivity in Resting-State fMRI | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 梁庚辰(Keng-Chen Liang) | |
| dc.contributor.oralexamcommittee | 郭柏呈(Bo-Cheng Kuo),陳德祐(Der-Yow Chen) | |
| dc.subject.keyword | 記憶,固化,靜息態功能性磁振造影,功能性連結, | zh_TW |
| dc.subject.keyword | memory,consolidation,resting-state fMRI,functional connectivity, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 心理學研究所 | zh_TW |
| 顯示於系所單位: | 心理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 781.74 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
