請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61037完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳炳煇 | |
| dc.contributor.author | Chia-Wei Chen | en |
| dc.contributor.author | 陳嘉偉 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:42:47Z | - |
| dc.date.available | 2018-08-26 | |
| dc.date.copyright | 2013-08-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-13 | |
| dc.identifier.citation | 1. Manz, A., Graber, N. and Widmer, H.M., 'Miniaturized total chemical-analysis systems - a novel concept for chemical sensing,' Sensors and Actuators B-Chemical,vol. 1, pp. 244-248, 1990.
2. Grover, W.H., Skelley, A.M., Liu, C.N., Lagally, E.T. and Mathies, R.A., 'Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices,' Sensors and Actuators B-Chemical,vol. 89, pp. 315-323, 2003. 3. Huang, S.B., Wu, M.H., Cui, Z.F., Cui, Z. and Lee, G.B., 'A membrane-based serpentine-shape pneumatic micropump with pumping performance modulated by fluidic resistance,' Journal of Micromechanics and Microengineering,vol. 18, pp. 1-12, 2008. 4. Lin, B.C. and Su, Y.C., 'On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves,' Journal of Micromechanics and Microengineering,vol. 18, pp. 1-10, 2008. 5. Li, W., Greener, J., Voicu, D. and Kumacheva, E., 'Multiple modular microfluidic (M-3) reactors for the synthesis of polymer particles,' Lab on a Chip,vol. 9, pp. 2715-2721, 2009. 6. Hufnagel, H., Huebner, A., Gulch, C., Guse, K., Abell, C. and Hollfelder, F., 'An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets,' Lab on a Chip,vol. 9, pp. 1576-1582, 2009. 7. Dimov, I.K., Riaz, A., Ducree, J. and Lee, L.P., 'Hybrid integrated PDMS microfluidics with a silica capillary,' Lab on a Chip,vol. 10, pp. 1468-1471, 2010. 8. Chen, Y.W., Wang, H., Hupert, M., Witek, M., Dharmasiri, U., Pingle, M.R., Barany, F. and Soper, S.A., 'Modular microfluidic system fabricated in thermoplastics for the strain-specific detection of bacterial pathogens,' Lab on a Chip,vol. 12, pp. 3348-3355, 2012. 9. Sun, K., Wang, Z.X. and Jiang, X.Y., 'Modular microfluidics for gradient generation,' Lab on a Chip,vol. 8, pp. 1536-1543, 2008. 10. Rhee, M. and Burns, M.A., 'Microfluidic assembly blocks,' Lab on a Chip,vol. 8, pp. 1365-1373, 2008. 11. 劉達生,樂高模組化微流元件應用於微流晶片之研究,博士,機械工程學研究所,臺灣大學,台北市,2009. 12. 黃銘希,模組化微流元件的優化與效能分析,碩士,機械工程學研究所,臺灣大學,台北市,2011. 13. Yuen, P.K., Bliss, J.T., Thompson, C.C. and Peterson, R.C., 'Multidimensional modular microfluidic system,' Lab on a Chip,vol. 9, pp. 3303-3305, 2009. 14. Schumacher, S., Nestler, J., Otto, T., Wegener, M., Ehrentreich-Forster, E., Michel, D., Wunderlich, K., Palzer, S., Sohn, K., Weber, A., Burgard, M., Grzesiak, A., Teichert, A., Brandenburg, A., Koger, B., Albers, J., Nebling, E. and Bier, F.F., 'Highly-integrated lab-on-chip system for point-of-care multiparameter analysis,' Lab on a Chip,vol. 12, pp. 464-473, 2012. 15. Langelier, S.M., Livak-Dahl, E., Manzo, A.J., Johnson, B.N., Walter, N.G. and Burns, M.A., 'Flexible casting of modular self-aligning microfluidic assembly blocks,' Lab on a Chip,vol. 11, pp. 1679-1687, 2011. 16. Turkevich, J., Stevenson, P.C. and Hillier, J., 'A study of the nucleation and growth processes in the synthesis of colloidal gold,' Discussions of the Faraday Society,vol. 11, pp. 55-75, 1951. 17. Frens, G., 'Controlled nucleation for regulation of particle-size in monodisperse gold suspensions,' Nature-Physical Science,vol. 241, pp. 20-22, 1973. 18. Sereemaspun, A., Rojanathanes, R. and Wiwanitkit, V., 'Effect of gold nanoparticle on renal cell: An implication for exposure risk,' Renal Failure,vol. 30, pp. 323-325, 2008. 19. Song, Y.J., Hormes, J. and Kumar, C.S.S.R., 'Microfluidic synthesis of nanomaterials,' Small,vol. 4, pp. 698-711, 2008. 20. Yang, S.Y., Cheng, F.Y., Yeh, C.S. and Lee, G.B., 'Size-controlled synthesis of gold nanoparticles using a micro-mixing system,' Microfluidics and Nanofluidics,vol. 8, pp. 303-311, 2010. 21. Ftouni, J., Penhoat, M., Addad, A., Payen, E., Rolando, C. and Girardon, J.S., 'Highly controlled synthesis of nanometric gold particles by citrate reduction using the short mixing, heating and quenching times achievable in a microfluidic device,' Nanoscale,vol. 4, pp. 4450-4454, 2012. 22. Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A. and Arnheim, N., 'Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia,' Science,vol. 230, pp. 1350-1354, 1985. 23. Wilding, P., Shoffner, M.A. and Kricka, L.J., 'Pcr in a silicon microstructure,' Clinical Chemistry,vol. 40, pp. 1815-1818, 1994. 24. Waters, L.C., Jacobson, S.C., Kroutchinina, N., Khandurina, J., Foote, R.S. and Ramsey, J.M., 'Multiple sample PCR amplification and electrophoretic analysis on a microchip,' Analytical Chemistry,vol. 70, pp. 5172-5176, 1998. 25. Krishnan, M., Ugaz, V.M. and Burns, M.A., 'PCR in a rayleigh-benard convection cell,' Science,vol. 298, pp. 793-793, 2002. 26. Chou, W.P., Chen, P.H., Miao, M., Kuo, L.S., Yeh, S.H. and Chen, P.J., 'Rapid DNA amplification in a capillary tube by natural convection with a single isothermal heater,' Biotechniques,vol. 50, pp. 52-57, 2011. 27. Shoffner, M.A., Cheng, J., Hvichia, G.E., Kricka, L.J. and Wilding, P., 'Chip PCR .1. Surface passivation of microfabricated silicon-glass chips for PCR,' Nucleic Acids Research,vol. 24, pp. 375-379, 1996. 28. Shin, Y.S., Cho, K., Lim, S.H., Chung, S., Park, S.J., Chung, C., Han, D.C. and Chang, J.K., 'PDMS-based micro PCR chip with parylene coating,' Journal of Micromechanics and Microengineering,vol. 13, pp. 768-774, 2003. 29. Tabrizi, A., Ayhan, F. and Ayhan, H., 'Gold nanoparticle synthesis and characterisation,' Hacettepe Journal of Biology and Chemistry,vol. 37, pp. 217-226, 2009. 30. http://allserv.UGent.be/~avierstr/principles/pcr.html. 31. http://www.dowcorning.com/. 32. 蔡宜樺,應用奈米電極檢測之單一核酸多型性生物晶片,碩士,機械工程學研究所,臺灣大學,台北市,2003. 33. Link, S. and El-Sayed, M.A., 'Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,' Journal of Physical Chemistry B,vol. 103, pp. 8410-8426, 1999. 34. 佘瑞琳, 張英德, 張煥宗, 陳竹亭, '金奈米粒子之合成及鑑定-統整型化學實驗實例,' 化學,vol. 62, pp. 563-568, 2004. 35. Ji, X.H., Song, X.N., Li, J., Bai, Y.B., Yang, W.S. and Peng, X.G., 'Size control of gold nanocrystals in citrate reduction: The third role of citrate,' Journal of the American Chemical Society,vol. 129, pp. 13939-13948, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61037 | - |
| dc.description.abstract | 模組化微流元件的製作大多以微機電系統(MEMS)為主。而MEMS大多有製程複雜和耗時的問題。本研究所設計的可交換式模組化微流元件,利用CNC加工製作的模具,以二甲基矽氧烷(PDMS)翻模而成。相較於MEMS而言,本研究容易做出3D半球型的元件,製程簡單不需多層堆疊,縮短製作的時間。
藉由元件上一體成形的連接器設計,可根據不同的用途,讓每個元件任意組裝成微流道系統。元件分為兩大類:功能元件和連通元件。功能元件有大小幫浦、薄膜單向閥門、渦流式混合器、儲存槽、加熱區。連通元件則有直管、T型管、十字管、L型管和高度管。其特點是模組化設計、可任意組裝、操作方便。 本研究以兩種應用來證實此模組化微流元件在流體實驗的可行性,並皆以手壓幫浦代替注射幫浦為驅動源。一種是奈米金的合成,將四氯金酸與檸檬酸鈉分別置入兩個儲存槽,注入以渦流式混合器為主的微流系統,並於出口收集溶液。合成時間總共11分鐘。以穿透式電子顯微鏡(TEM)檢測出粒徑約7.31±2.34nm,用紫外光/可見光吸收光譜儀檢測其吸收光譜,表面電漿共振波峰為523nm。 第二種應用則是藉由毛細管熱對流聚合酶連鎖反應(CCPCR)的方式檢測Hepatitis B Virus (HBV122bp)。將試劑分別置入兩個儲存槽,混合後導入插著玻璃毛細管的加熱區上,經由40分鐘成功檢測初始濃度為105 copies/μl 的HBV 122-base pair DNA片段。 藉由這些應用,可以得出本研究模組化的設計具有相當大的潛力。相信這樣的設計易吸引台灣多數一般初等及中等教育的學生。對於學生而言,製作與操作的難度不高,學習的過程就有如遊戲一樣,從小打下熱流的基石。 | zh_TW |
| dc.description.abstract | The new swappable fluidic module (SFM) is proposed in this research. We designed and fabricated selected modular fluidic components including two types. The functional components consist of the finger-driven electricity-free pumps, one-way valve, vortex mixer, reservoir and heating block, whereas the straight tube, T-type tube, cross tube, corner tube and height tube can be categorized into the auxiliary components. They can be readily swapped and integrated into a variety of modular devices for quick assembly of a fully-portable, disposable fluidic system. In practice, an integrated SFM utilizes finger-driven electricity-free pumps to deliver the fluids. Using the swirling mechanism, the vortex mixer can rapidly mix two liquids in a one-shot mixing event. We then demonstrated the successful usage of this SFM for microfluidic applications such as synthesis of gold nanoparticles (AuNPs) from chloroauric acid (HAuCl4) and nucleic acid amplification from Hepatitis B Virus (HBV) with capillary convective polymerase chain reaction (CCPCR). The CCPCR results demonstrated the successful amplification of DNA sequences in 40 min from HBV 122 bp at the DNA concentration of 105 copies/μl. The TEM analysis and surface plasmon bands centered at λ= 523 nm revealed the apparent production of gold nanoparticles in 11 min with a mean diameter of 7.31±2.34 nm. As compared to the conventional microfluidic devices, the LEGOR-like SFMs can be readily swapped and integrated into a variety of modular devices for quick assembly and replacement of certain components to realize a fully-portable, disposable fluidic system, implying great potential for diverse bio-chemical applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:42:47Z (GMT). No. of bitstreams: 1 ntu-102-R00522307-1.pdf: 6922055 bytes, checksum: 086292139ea40bf8bcb806d51c28d3c4 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究背景與文獻回顧 2 1.2.1 模組化微流元件 2 1.2.2 奈米金粒子合成 18 1.2.3 毛細管熱對流聚合酶連鎖反應 22 1.3 研究動機與目的 24 第二章 實驗原理與設備 27 2.1 實驗原理 27 2.1.1 奈米金粒子合成 27 2.1.1.1 奈米金合成原理 27 2.1.1.2 穿透式電子顯微鏡檢測 28 2.1.1.3 紫外光/可見光分光光譜儀檢測 29 2.1.2 毛細管熱對流聚合酶連鎖反應 30 2.1.2.1 聚合酶連鎖反應 30 2.1.2.2 毛細管熱對流聚合酶連鎖反應 32 2.1.2.3 洋菜凝膠電泳檢測 33 2.1.2.4 紫外光檢測 34 2.2 實驗藥品與設備 35 2.2.1 翻模 35 2.2.1.1 翻模的化學藥品 35 2.2.1.2 設備 35 2.2.2 奈米金粒子合成 36 2.2.2.1 奈米金合成的化學藥品 36 2.2.2.2 設備 36 2.2.3 毛細管熱對流聚合酶連鎖反應 37 2.2.3.1 聚合酶連鎖反應的試劑 37 2.2.3.2 凝膠電泳分析的化學藥品 38 2.2.3.3 設備 39 第三章 模組化微流元件之設計概念與製作 42 3.1 元件的翻模製程 42 3.2 一體成型連接器的設計 43 3.3 功能元件的設計與製作 46 3.3.1 指壓幫浦 47 3.3.2 渦漩式混合器 50 3.3.3 薄膜單向閥門 53 3.3.4 儲存槽 56 3.3.5 加熱區 58 3.4 連通元件的設計與製作 60 3.4.1 高度管元件 60 3.4.2 輔助圓管元件 62 第四章 模組化微流系統之應用 64 4.1 奈米金合成系統 64 4.1.1 微流元件組合架構 64 4.1.2 奈米金試劑配置 65 4.1.3 實驗方法與步驟 66 4.2 毛細管熱對流聚合酶連鎖反應系統 69 4.2.1 微流元件組合架構 70 4.2.2 溫度量測 71 4.2.3 DNA試劑配製 72 4.2.4 實驗方法與步驟 73 第五章 結果與討論 78 5.1 奈米金粒子合成 78 5.1.1 合成之奈米金粒子與商用之比較 78 5.1.2 渦漩式混和器與T型管之合成效果差異 80 5.1.3 不同濃度的檸檬酸鈉對於粒徑大小之比較 83 5.2 毛細管熱對流聚合酶連鎖反應 86 5.2.1 溫度量測結果 86 5.2.2 檢測結果 88 第六章 結論與未來展望 90 6.1 結論 90 6.2 未來展望 92 參考文獻 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 連鎖反應 | zh_TW |
| dc.subject | 奈米金合成 | zh_TW |
| dc.subject | 毛細管熱對流聚合酶 | zh_TW |
| dc.subject | 可交換式模組化微流元件 | zh_TW |
| dc.subject | 模組化微流元件 | zh_TW |
| dc.subject | micro-fluidic device | en |
| dc.subject | modular micro-fluidic device | en |
| dc.subject | synthesis of gold nanoparticles | en |
| dc.subject | capillary convective polymerase chain reaction | en |
| dc.title | 可交換式模組化微流元件之設計與應用 | zh_TW |
| dc.title | Development of the swappable fluidic module for bio-chem applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李達生,王明文 | |
| dc.subject.keyword | 模組化微流元件,可交換式模組化微流元件,奈米金合成,毛細管熱對流聚合酶,連鎖反應, | zh_TW |
| dc.subject.keyword | micro-fluidic device,modular micro-fluidic device,synthesis of gold nanoparticles,capillary convective polymerase chain reaction, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
