Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 天文物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61027
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳丕燊(Pisin Chen)
dc.contributor.authorChung-Hei Leungen
dc.contributor.author梁仲希zh_TW
dc.date.accessioned2021-06-16T10:42:12Z-
dc.date.available2020-08-04
dc.date.copyright2020-08-04
dc.date.issued2020
dc.date.submitted2020-07-08
dc.identifier.citation[1] A. Aab et al. Probing the radio emission from air showers with polarization mea­ surements. Phys. Rev. D, 89:052002, Mar 2014.
[2] H. Abramowicz and A. Levy. The allm parameterization of sigma tot (gamma ∗ p) ­ an update, 1997.
[3] P. Abreu et al. Interpretation of the depths of maximum of extensive air showers measured by the pierre auger observatory. Journal of Cosmology and Astroparticle Physics, 2013(02):026–026, feb 2013.
[4] F. Aharonian et al. Energy spectrum of cosmic­ray electrons at tev energies. Phys. Rev. Lett., 101:261104, Dec 2008.
[5] P. Allison, J. Auffenberg, R. Bard, J. Beatty, D. Besson, S. Böser, C. Chen, P. Chen, A. Connolly, J. Davies, M. DuVernois, B. Fox, P. Gorham, E. Grashorn, K. Han­ son, J. Haugen, K. Helbing, B. Hill, K. Hoffman, E. Hong, M. Huang, M. Huang, A. Ishihara, A. Karle, D. Kennedy, H. Landsman, T. Liu, L. Macchiarulo, K. Mase, T. Meures, R. Meyhandan, C. Miki, R. Morse, M. Newcomb, R. Nichol, K. Rat­ zlaff, M. Richman, L. Ritter, C. Rott, B. Rotter, P. Sandstrom, D. Seckel, J. Touart, G. Varner, M.­Z. Wang, C. Weaver, A. Wendorff, S. Yoshida, and R. Young. Design and initial performance of the askaryan radio array prototype eev neutrino detector at the south pole. Astroparticle Physics, 35(7):457 – 477, 2012.
[6] J. Alvarez­Muñiz, W. R. Carvalho, K. Payet, A. Romero­Wolf, H. Schoorlemmer, and E. Zas. Comprehensive approach to tau­lepton production by high­energy tau neutrinos propagating through the earth. Phys. Rev. D, 97:023021, Jan 2018.
[7] J. Alvarez­Muñiz, W. R. Carvalho, A. Romero­Wolf, M. Tueros, and E. Zas. Coher­ ent radiation from extensive air showers in the ultrahigh frequency band. Phys. Rev. D, 86:123007, Dec 2012.
[8] J. Alvarez­Muniz, M. Risse, G. I. Rubtsov, and B. T. Stokes. Review of the Multi­ messenger Working Group at UHECR­2012. EPJ Web Conf., 53:01009, 2013.
[9] J. Alvarez­Muñiz, W. R. Carvalho, and E. Zas. Monte carlo simulations of radio pulses in atmospheric showers using zhaires. Astroparticle Physics, 35(6):325 – 341, 2012.
[10] G. A. Askar’yan. Excess negative charge of an electron­photon shower and its co­ herent radio emission. Sov. Phys. JETP, 14(2):441–443, 1962. [Zh. Eksp. Teor. Fiz.41,616(1961)].
[11] S. Barwick, E. Berg, D. Besson, G. Binder, W. Binns, D. Boersma, R. Bose, D. Braun, J. Buckley, V. Bugaev, S. Buitink, K. Dookayka, P. Dowkontt, T. Duffin, S. Euler, L. Gerhardt, L. Gustafsson, A. Hallgren, J. Hanson, M. Israel, J. Kiryluk, S. Klein, S. Kleinfelder, H. Niederhausen, M. Olevitch, C. Persichelli, K. Ratzlaff, B. Rauch, C. Reed, M. Roumi, A. Samanta, G. Simburger, T. Stezelberger, J. Tatar, U. Uggerhoj, J. Walker, G. Yodh, and R. Young. A first search for cosmogenic neu­ trinos with the arianna hexagonal radio array. Astroparticle Physics, 70:12 – 26, 2015.
[12] S. Barwick, E. Berg, D. Besson, E. Cheim, T. Duffin, J. Hanson, S. Klein, S. Kle­ infelder, T. Prakash, M. Piasecki, K. Ratzlaff, C. Reed, M. Roumi, A. Samanta, T. Stezelberger, J. Tatar, J. Walker, R. Young, and L. Zou. Design and performance of the arianna hexagonal radio array systems. 10 2014.
[13] S. Barwick et al. Radio detection of air showers with the arianna experiment on the ross ice shelf. Astroparticle Physics, 90:50 – 68, 2017.
[14] J. K. Becker. High­energy neutrinos in the context of multimessenger physics. Phys. Rept., 458:173–246, 2008.
[15] S. F. Berezhnev et al. The primary cr spectrum by the data of the tunka­133 array.
[16] J. Beringer et al. Review of particle physics. Phys. Rev. D, 86:010001, Jul 2012.
[17] S. A. Colgate. The detection of high­energy cosmic­ray showers by the combined optical and electromagnetic pulse. , 72(19):4869–4879, Oct 1967.
[18] W. Commons. File:feynman diagram of decay of tau lepton.svg — wikimedia com­ mons, the free media repository, 2014. [Online; accessed 10­February­2020].
[19] W. Commons. File:pair production cartoon.gif — wikimedia commons, the free media repository, 2018. [Online; accessed 10­February­2020].
[20] W. Commons. File:bremsstrahlung.svg — wikimedia commons, the free media repository, 2019. [Online; accessed 10­February­2020].
[21] A. Connolly, R. S. Thorne, and D. Waters. Calculation of high energy neutrino nucleon cross sections and uncertainties using the martin­stirling­thorne­watt par­ ton distribution functions and implications for future experiments. Phys. Rev. D, 83:113009, Jun 2011.
[22] J. W. Cronin, S. P. Swordy, and T. K. Gaisser. Cosmic rays at the energy frontier. Sci. Am., 276:32–37, 1997.
[23] K. D. de Vries, O. Scholten, and K. Werner. The air shower maximum probed by Cherenkov effects from radio emission. Astropart. Phys., 45:23–27, 2013.
[24] A. M. Dziewonski and D. L. Anderson. Preliminary reference earth model. Physics of the Earth and Planetary Interiors, 25(4):297 – 356, 1981.
[25] R. Gandhi, C. Quigg, M. H. Reno, and I. Sarcevic. Ultrahigh­energy neutrino inter­ actions. Astroparticle Physics, 5(2):81 – 110, 1996.
[26] D. García­Fernández, J. Alvarez­Muñiz, W. R. Carvalho, A. Romero­Wolf, and E. Zas. Calculations of electric fields for radio detection of ultrahigh energy par­ ticles. Phys. Rev. D, 87:023003, Jan 2013.
[27] P. Gorham et al. The antarctic impulsive transient antenna ultra­high energy neutrino detector: Design, performance, and sensitivity for the 2006–2007 balloon flight. Astroparticle Physics, 32(1):10 – 41, 2009.
[28] P. W. Gorham et al. Characteristics of four upward­pointing cosmic­ray­like events observed with anita. Phys. Rev. Lett., 117:071101, Aug 2016.
[29] P. W. Gorham et al. Observation of an unusual upward­going cosmic­ray­like event in the third flight of anita. Phys. Rev. Lett., 121:161102, Oct 2018.
[30] P. W. Gorham et al. Observation of an unusual upward­going cosmic­ray­like event in the third flight of anita. Phys. Rev. Lett., 121:161102, Oct 2018.
[31] K. Greisen. End to the cosmic­ray spectrum? Phys. Rev. Lett., 16:748–750, Apr 1966.
[32] B. H., H. W., and D. P. A. Maurice. On the stopping of fast particles and on the creation of positive electrons. Proc. R. Soc. Lond. A, 146, Aug 1934.
[33] L. H., K. C. Jezek, B. Li, and Z. Zhao. Radarsat antarctic mapping project digital elevation model, version 2. 400m ramp dem data set. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center., 2015.
[34] K. Hagiwara, T. Li, K. Mawatari, and J. Nakamura. Taudecay: a library to simulate polarized tau decays via feynrules and madgraph5. The European Physical Journal C, 73(7):2489, Jul 2013.
[35] W. F. Hanlon. Updated Cosmic Ray Spectrum, 2008(accessed 2016).
[36] D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw. CORSIKA: a Monte Carlo code to simulate extensive air showers., 1998.
[37] S.­Y. Hsu. Studies of the radio wave detection of cosmic rays and cosmic neutrinos for TAROGE and ANITA. National Taiwan University Master Thesis, pages 1–106, 2016.
[38] M.­H. Huang. http://pre.tir.tw/096/.
[39] M.­H. Huang. SHINIE: Simulation of high energy neutrinos interacting with the earth. Nuclear Physics B ­ Proceedings Supplements, 175­176:472–475, 01 2008.
[40] T. Huege and C. W. James. Full monte carlo simulations of radio emission from extensive air showers with coreas, 2013.
[41] S. Iyer Dutta, M. Reno, I. Sarcevic, and D. Seckel. Propagation of muons and taus at high energies. Physical review D: Particles and fields, 63(9), 1 2001.
[42] S. Jadach, J. H. Kühn, and Z. Wa̧s. Tauola ­ a library of monte carlo programs to sim­ ulate decays of polarized τ leptons. Computer Physics Communications, 64(2):275 – 299, 1991.
[43] F. D. Kahn and I. Lerche. Radiation from cosmic ray air showers. Proc. R. Soc. Lond. A, 289:206, 1966.
[44] K. Kotera, D. Allard, and A. Olinto. Cosmogenic neutrinos: parameter space and detectabilty from PeV to ZeV. Journal of Cosmology and Astroparticle Physics, 2010(10):013–013, oct 2010.
[45] K. Kotera and A. V. Olinto. The astrophysics of ultrahigh­energy cosmic rays. An­ nual Review of Astronomy and Astrophysics, 49(1):119–153, 2011.
[46] I. Kravchenko, S. Hussain, D. Seckel, D. Besson, E. Fensholt, J. Ralston, J. Taylor, K. Ratzlaff, and R. Young. Updated results from the rice experiment and future prospects for ultra­high energy neutrino detection at the south pole. Phys. Rev. D, 85:062004, Mar 2012.
[47] A. Lagutin, A. Plyasheshnikov, and A. Goncharov. The lateral distribution of the electrons in the electromagnetic air shower. Nuclear Physics B ­ Proceedings Sup­ plements, 60(3):161 – 167, 1998.
[48] L. Landau and I. Pomeranchuk. Electron­showers processes at ultra­high energies. Dokl.Akad.Nauk.SSSR, 92:735–738, 1953.
[49] B. L.B. and B. Eh.V. Nucleon shadowing effects in photon­nucleus interactions. Yadernaya Fizika, 33(5):1195–1207, 1981.
[50] J. Linsley. private communication by m.hillas, 1988.
[51] W. Lohmann, R. Kopp, and R. Voss. Energy loss of muons in the energy range 1­10000 GeV. CERN Yellow Reports: Monographs. CERN, Geneva, 1985.
[52] P. Maestro. Cosmic rays: direct measurements. Proceedings of Science(ICRC2015), 016, 2015.
[53] A. B. Migdal. Bremsstrahlung and pair production in condensed media at high en­ ergies. Phys. Rev., 103:1811–1820, Sep 1956.
[54] M. J. Mottram. A Search for Ultra­High Energy Neutrinos and Cosmic­Rays with ANITA­2. Springer, Berlin, Heidelberg, 2012.
[55] J. Nam et al. High­elevation synoptic radio array for detection of upward moving air­showers, deployed in the Antarctic mountains. PoS, ICRC2019:967, 2019.
[56] J. Nam and T. C. Liu. Feasibility of antenna array experiment for Earth skimming tau­neutrino detection in Antarctica. PoS, ICRC2017:944, 2018.
[57] K. Olive. Review of particle physics. Chinese Physics C, 38(9):090001, aug 2014.
[58] A. A. Penzias and R. W. Wilson. A Measurement of Excess Antenna Temperature at 4080 Mc/s. , 142:419–421, Jul 1965.
[59] B. Pontecorvo. Mesonium and anti­mesonium. Zh. Eksp. Teor. Fiz., 33:549–551, 1957.
[60] C. Quigg, M. H. Reno, and T. P. Walker. Interactions of ultrahigh­energy neutrinos. Phys. Rev. Lett., 57:774–777, Aug 1986.
[61] A. Romero­Wolf et al. Comprehensive analysis of anomalous ANITA events disfa­ vors a diffuse tau­neutrino flux origin. Phys. Rev. D, 99:063011, Mar 2019.
[62] O. Scholten, K. D. de Vries, and K. Werner. Coherent radiation from extensive air showers. Nucl. Instrum. Meth., A662:S80–S84, 2012.
[63] H. Schoorlemmer et al. Energy and flux measurements of ultra­high energy cosmic rays observed during the first anita flight. Astroparticle Physics, 77:32 – 43, 2016.
[64] F. G. Schröder. Status of the radio technique for cosmic­ray induced air showers. Nuclear and Particle Physics Proceedings, 279­281:190 – 197, 2016. Proceedings of the 9th Cosmic Ray International Seminar.
[65] F. G. Schröder. Radio detection of cosmic­ray air showers and high­energy neutrinos. Progress in Particle and Nuclear Physics, 93:1 – 68, 2017.
[66] T. Serebryakova, A. Goncharov, A. Lagutin, R. Raikin, and A. Misaki. Lateral dis­ tributions of electrons in air showers initiated by ultra­high energy gamma quanta taking into account LPM and geomagnetic field effects. Journal of Physics: Con­ ference Series, 1181:012088, feb 2019.
[67] M. W. E. Smith et al. The Astrophysical Multimessenger Observatory Network (AMON). Astropart. Phys., 45:56–70, 2013.
[68] T. Stanev, C. Vankov, R. E. Streitmatter, R. W. Ellsworth, and T. Bowen. Develop­ ment of ultrahigh­energy electromagnetic cascades in water and lead including the landau­pomeranchuk­migdal effect. Phys. Rev. D, 25:1291–1304, Mar 1982.
[69] M. Tanabashi et al. Review of particle physics. Phys. Rev. D, 98:030001, Aug 2018.
[70] M. Tartare, D. Lebrun, and F. m. c. Montanet. Influence of the photonuclear effect on electron­neutrino­induced electromagnetic cascades under the landau­pomeranchuk­ migdal regime in standard rock. Phys. Rev. D, 86:033005, Aug 2012.
[71] S.­H. Wang et al. Status, calibration, and cosmic ray detection of arianna­hcr station. PoS(ICRC2019), page 462, 2019.
[72] E. Zas, F. Halzen, and T. Stanev. Electromagnetic pulses from high­energy showers: Implications for neutrino detection. Phys. Rev. D, 45:362–376, Jan 1992.
[73] G. T. Zatsepin and V. A. Kuz’min. Upper Limit of the Spectrum of Cosmic Rays. Soviet Journal of Experimental and Theoretical Physics Letters, 4:78, Aug 1966.
[74] 容震軒, C.­H. Iong, 林貴林, and G.­L. Lin. 淺穿地球之 tau 微中子模擬研究. http://hdl.handle.net/11536/55802, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61027-
dc.description.abstract極高能宇宙射線及宇宙微中子的研究已行之有年,而近年來關於無線電波波段的探測方法逐漸地被開發、討論。南極天文粒子地磁同步輻射觀測站 (Taiwan Astroparticle Radio Observatory of GeosynchrotronEmission,簡稱 TAROGE­M) 探測無線電波,坐立於南極的墨爾本山上,以 3 支水平及 1 支垂直指向北面的天線來觀測掠過地球的宇宙微中子 (Earth­Skimming Neutrino) 。由於墨爾本山是羅斯冰架附近比較高的山,與附近的地形有足夠的距離,容讓從微中子演變的濤子 (Tau lepton) 有足夠的距離發展大氣簇射,與地磁作用並引發足夠的電磁波。借此,TAROGE­M 才有能力觀測掠過地球的微中子訊號。本論文就 TAROGE­M 的條件進行模擬,探討此系統探測掠過地球的宇宙微中子的可行性,並就 ANITA (ANtarctic Impulse Transient Antenna) 及另一由台大次震宇宙館負責的 ARIANNA­-HCR 進行模擬,從而確定模擬的可信性及廣泛性,並比較各實驗對濤子微中子的靈敏度。此外,南極的熱氣球實驗 (ANITA) 從過去三次飛行中獲得豐碩的成果之後,2016 年進行了第四次的飛行。而 ANITA-­I 及 ANITA-­III 分別各測量到一次異常的訊號。由於目前仍沒有確切的物理背景能解釋這兩個訊號
的來源,世界各地的物理學家都正以不同的理論嘗試了解當中的原因。本論文亦會探討倘若異常訊號的物理過程與濤子微中子一樣的情況下,TAROGE-­M 理應接收到多少此等訊號。
zh_TW
dc.description.abstractThe detection of the ultra high energy cosmic rays (UHECRs) and the cosmic neutrinos has been studied for ages. In the past decades, the use of radio frequency waves (RF) to detect UHE cosmic rays and neutrinos has advanced significantly. The Taiwan Astroparticle Radio Observatory of Geosynchrotron Emission ­ Mt. Melbourne (TAROGE-­M) detects ultra ­wide band impulsive radio frequency (RF) signals emitted by the air­ shower with three horizontal and one vertical antennas pointing to North. It was located on top of Mt. Melbourne in Antarctica. The height of Mt. Melbourne helps the detection of radio signal because the air showers have enough distance to develop and deflect by the geomagnetic field for creating a detectable signal before reaching the detector on the mountain. This thesis I present a comprehensive study of the sensitivity of TAROGE-­M to a diffuse tau neutrino flux detected via tau ­lepton ­induced air showers with the standard model. Besides, I will present the comparison of experiments, including TAROGE-­M, ANtarctic
Impulse Transient Antenna (ANITA) and ARIANNA­-HCR, with the same simulation in order to show the flexibility and reliability of this simulation. ANITA collaboration has recently reported the observation of two anomalous up-going air­ shower events with air shower energies of 0.6 EeV, observed during the first and the third flight. Since there is no concrete explanation of these two events, physicists around the world are trying to interpret them with different hypothesis. This thesis would also predict how many same kind of events TAROGE­-M should detect, assuming the mechanism of these events and tau neutrino are the same.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:42:12Z (GMT). No. of bitstreams: 1
U0001-0107202014560600.pdf: 5019245 bytes, checksum: 79d28cfcb0741219eeb0d8ce95c0a9b2 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 iii
誌謝 v
Acknowledgements vii
摘要 ix
Abstract xi
1 Introduction 1
2 Ultra­High Energy Astroparticle Physics 3
2.1 The Cosmic Ray Spectrum 3
2.1.1 The Greisen–Zatsepin–Kuzmin Effect 5
2.2 Neutrinos 6
3 The Standard Model and Neutrino Physics 9
3.1 Differential Cross Section νN scattering 10
3.2 Cross section for νN scattering 10
4 Lepton Physics 13
4.1 Electron 13
4.2 Muon 14
4.2.1 Decay 14
4.2.2 Energy Loss 15
4.3 Tau 18
4.3.1 Decay 18
4.3.2 Energy Loss 19
5 Radio Emission in Ultra-High Energy Particle Showers 23
5.1 Air Shower 23
5.1.1 Electromagnetic shower 23
5.1.2 Hadronic shower 24
5.2 Radio Emission by Particle Cascade 25
5.2.1 Coherence 25
5.3 Emission Mechanism 28
5.3.1 Geomagnetic effect 28
5.3.2 Askaryan effect 30
6 The Antarctic Impulsive Transient Antenna 33
6.1 Detection Concept 33
6.2 Result: Two Anomalous Events 34
7 ARIANNA Horizontal Cosmic Ray 39
7.1 Detection Concept 40
7.2 Cosmic ray search and background rejection 41
8 Taiwan Astroparticle Radio Observatory of Geosynchrotron Emission - MtMelbourne 43
8.1 Detection Concept 43
9 Event Simulation 45
9.1 Geometry Model 45
9.2 Atmosphere Model 47
9.3 SHINIE 48
9.3.1 Isotropy 48
9.3.2 Neutrino Simulation 49
9.3.3 Tau Lepton Propagation 53
9.4 TAUOLA 55
9.4.1 Discussion 58
9.5 CORSIKA and CoREAS 59
9.5.1 Discussion 61
9.6 Detection Model 62
9.6.1 System Response Simulation 62
9.6.2 Parametrization of peak voltage 64
9.6.3 Depth of shower maximum Xmax 72
9.6.4 Monte Carlo simulations 74
10 Verification and validation of the simulation model 75
10.1 Geometry 75
10.2 Verification of SHINIE 76
10.3 Distribution of Tau Energy 77
10.4 Radio Emission Model and Detection Model 77
10.5 Monte Carlo simulation 79
10.6 Reproduce the figure of acceptance 80
11 Result 83
12 Conclusion 87
Bibliography 89
dc.language.isoen
dc.subject無線電波zh_TW
dc.subject中微子zh_TW
dc.subject宇宙射線zh_TW
dc.subjectCosmic rayen
dc.subjectneutrinoen
dc.subjectradio waveen
dc.subjecttauen
dc.title宇宙微中子之無線電波探測研究zh_TW
dc.titleStudies of the Radio Wave Detection of Earth-Skimming Tau Neutrinos for TAROGE­-Men
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.advisor-orcid陳丕燊(0000-0001-5251-7210)
dc.contributor.coadvisor南智祐(Jiwoo Nam)
dc.contributor.oralexamcommittee胡德邦(Tak Pong Woo)
dc.subject.keyword宇宙射線,中微子,無線電波,zh_TW
dc.subject.keywordCosmic ray,neutrino,radio wave,tau,en
dc.relation.page96
dc.identifier.doi10.6342/NTU202001239
dc.rights.note有償授權
dc.date.accepted2020-07-08
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept天文物理研究所zh_TW
顯示於系所單位:天文物理研究所

文件中的檔案:
檔案 大小格式 
U0001-0107202014560600.pdf
  未授權公開取用
4.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved