Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61016
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉(Shang-Lien Lo)
dc.contributor.authorShang-Ru Yanen
dc.contributor.author顏上茹zh_TW
dc.date.accessioned2021-06-16T10:41:35Z-
dc.date.available2023-07-01
dc.date.copyright2020-07-17
dc.date.issued2020
dc.date.submitted2020-07-03
dc.identifier.citationAbbasi, M. and Asl, N.R. (2008) Sonochemical degradation of Basic Blue 41 dye assisted by nanoTiO2 and H2O2. Journal of Hazardous Materials, 153(3), 942-947.
Adewuyi, Y.G. (2001) Sonochemistry: environmental science and engineering applications. Industrial Engineering Chemistry Research, 40(22), 4681-4715.
Al Momani, F. (2007) Degradation of cyanobacteria anatoxin-a by advanced oxidation processes. Separation and Purification Technology, 57(1), 85-93.
Apha, A. (1998) Standard methods for the examination of water and wastewater. American Public Health Association. Inc., Washington, DC.
Bader, H. (1982) Determination of ozone in water by the indigo method: a submitted standard method.
Bader, H. and Hoigné, J. (1981) Determination of ozone in water by the indigo method. Water Research, 15(4), 449-456.
Boeve, L. (1989) Removing petroleum products from soils with ozone, ultraviolet, ultrasonics, and ultrapure water. Petroleum contaminated soils, 2, 279-282.
Chavadej, S., Phuaphromyod, P., Gulari, E., Rangsunvigit, P. and Sreethawong, T. (2008) Photocatalytic degradation of 2-propanol by using Pt/TiO2 prepared by microemulsion technique. Chemical Engineering Journal, 137(3), 489-495.
Chendke, P. and Fogler, H.S. (1974) Second-order sonochemical phenomena--extensions of previous work and applications in industrial processing.
Choi, J., Kim, J.-O. and Chung, J. (2016) Removal of isopropyl alcohol and methanol in ultrapure water production system using a 185 nm ultraviolet and ion exchange system. Chemosphere, 156, 341-346.
Chu, W., Wang, Y. and Leung, H. (2011) Synergy of sulfate and hydroxyl radicals in UV/S2O82−/H2O2 oxidation of iodinated X-ray contrast medium iopromide. Chemical Engineering Journal, 178, 154-160.
Deng, Y. and Zhao, R. (2015) Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Current Pollution Reports, 1(3), 167-176.
Destaillats, H., Colussi, A., Joseph, J.M. and Hoffmann, M.R. (2000) Synergistic effects of sonolysis combined with ozonolysis for the oxidation of azobenzene and methyl orange. The Journal of Physical Chemistry A, 104(39), 8930-8935.
Eberson, L. (1982) Advances in physical organic chemistry, pp. 79-185, Elsevier.
Fu, Z., Xian, X., Lin, S., Wang, C., Hu, W. and Li, G. (2012) Investigations of the barbell ultrasonic transducer operated in the full-wave vibrational mode. Ultrasonics, 52(5), 578-586.
Glaze, W.H., Kang, J.-W. and Chapin, D.H. (1987) The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation.
He, Z., Song, S., Ying, H., Xu, L. and Chen, J. (2007) p-Aminophenol degradation by ozonation combined with sonolysis: Operating conditions influence and mechanism. Ultrasonics sonochemistry, 14(5), 568-574.
Hoffmann, M.R., Hua, I. and Höchemer, R. (1996) Application of ultrasonic irradiation for the degradation of chemical contaminants in water. Ultrasonics sonochemistry, 3(3), S163-S172.
Hsu, Y.-L., Wu, H.-Z., Ye, M.-H., Chen, J.-P., Huang, H.-L. and Lin, P.H.-P. (2009) An industrial-scale biodegradation system for volatile organics contaminated wastewater from semiconductor manufacturing process. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 70-76.
Ince, N.H. and Tezcanlı́, G. (2001) Reactive dyestuff degradation by combined sonolysis and ozonation. Dyes and pigments, 49(3), 145-153.
Karami, M., Sharafi, K., Asadi, A., Bagheri, A., Yosefvand, F., Charganeh, S.S., Mirzaei, N. and Velayati, A. (2016) Degradation of Reactive Red 198 (RR198) from aqueous solutions by advanced oxidation processes (AOPS): O3, H2O2/O3 and H2O2/ultrasonic. Bulgarian Chemical Communications, 48(Specia), 43-49.
Konsowa, A. (2003) Decolorization of wastewater containing direct dye by ozonation in a batch bubble column reactor. Desalination, 158(1-3), 233-240.
Kušić, H., Koprivanac, N., Božić, A.L. and Selanec, I. (2006) Photo-assisted Fenton type processes for the degradation of phenol: a kinetic study. Journal of Hazardous Materials, 136(3), 632-644.
Leong, T., Ashokkumar, M. and Kentish, S. (2011) The fundamentals of power ultrasound-A review.
Li, A., Zhong, R., Li, X. and Zhang, J. (2020) Enhancement of sonochemical efficiency using combination of ultrasound with ultraviolet irradiation and water flow in a horn-type reactor. Chemical Engineering and Processing - Process Intensification, 150, 107884.
Lin, C.-C. and Tsai, C.-W. (2019) Degradation of isopropyl alcohol using UV and persulfate in a large reactor. Separation and Purification Technology, 209, 88-93.
Lin, S.H. and Wang, C.S. (2004) Recovery of isopropyl alcohol from waste solvent of a semiconductor plant. Journal of Hazardous Materials, 106(2-3), 161-168.
Modirshahla, N., Behnajady, M. and Ghanbary, F. (2007) Decolorization and mineralization of CI Acid Yellow 23 by Fenton and photo-Fenton processes. Dyes and pigments, 73(3), 305-310.
Murthy, Z.V.P. and Shah, M.K. (2017) Separation of isopropyl alcohol–toluene mixtures by pervaporation using poly(vinyl alcohol) membrane. Arabian Journal of Chemistry, 10, S56-S61.
Pang, Y.L., Abdullah, A.Z. and Bhatia, S. (2011) Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater. Desalination, 277(1-3), 1-14.
Patil, P.N. and Gogate, P.R. (2015) Degradation of dichlorvos using hybrid advanced oxidation processes based on ultrasound. Journal of Water Process Engineering, 8, e58-e65.
Poyatos, J.M., Muñio, M.M., Almecija, M.C., Torres, J.C., Hontoria, E. and Osorio, F. (2009) Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water, Air, and Soil Pollution, 205(1), 187.
Raghuvanshi, S., Gupta, S. and Babu, B. (2012) Growth Kinetics of Acclimated Mixed Culture for Degradation of Isopropyl Alcohol (IPA). Journal of Aquaculture Research Development, 3.
Ratoarinoro, N., Wilhelm, A., Berlan, J. and Delmas, H. (1992) Effects of ultrasound emitter type and power on a heterogeneous reaction. The Chemical Engineering Journal, 50(1), 27-31.
Riesz, P., Berdahl, D. and Christman, C. (1985) Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environmental Health Perspectives, 64, 233-252.
Ruiz, A. and Ogden, K.L. (2004) Biotreatment of copper and isopropyl alcohol in waste from semiconductor manufacturing. IEEE transactions on semiconductor manufacturing, 17(4), 538-543.
Salazar, C. and Nanny, M.A. (2010) Influence of hydrogen bonding upon the TiO2 photooxidation of isopropanol and acetone in aqueous solution. Journal of Catalysis, 269(2), 404-410.
Sellers, R.M. (1980) Spectrophotometric determination of hydrogen peroxide using potassium titanium (IV) oxalate. Analyst, 105(1255), 950-954.
Seymour, J.D. and Gupta, R.B. (1997) Oxidation of aqueous pollutants using ultrasound: salt-induced enhancement. Industrial Engineering Chemistry Research, 36(9), 3453-3457.
Sharma, S., Buddhdev, J., Patel, M. and Ruparelia, J.P. (2013) Studies on degradation of reactive red 135 dye in wastewater using ozone. Procedia Engineering, 51, 451-455.
Siddique, M., Farooq, R., Khan, Z.M., Khan, Z. and Shaukat, S. (2011) Enhanced decomposition of reactive blue 19 dye in ultrasound assisted electrochemical reactor. Ultrasonics sonochemistry, 18(1), 190-196.
Sivachandiran, L., Thévenet, F., Gravejat, P. and Rousseau, A. (2013) Isopropanol saturated TiO2 surface regeneration by non-thermal plasma: influence of air relative humidity. Chemical Engineering Journal, 214, 17-26.
Sotelo, J.L., Beltrán, F.J., Benitez, F.J. and Beltran-Heredia, J. (1987) Ozone decomposition in water: kinetic study. Industrial Engineering Chemistry Research, 26(1), 39-43.
Vecitis, C.D., Lesko, T., Colussi, A.J. and Hoffmann, M.R. (2010) Sonolytic decomposition of aqueous bioxalate in the presence of ozone. The Journal of Physical Chemistry A, 114(14), 4968-4980.
Wang, X., Wei, Y., Wang, J., Guo, W. and Wang, C. (2012) The kinetics and mechanism of ultrasonic degradation of p-nitrophenol in aqueous solution with CCl4 enhancement. Ultrasonics sonochemistry, 19(1), 32-37.
Weavers, L.K. and Hoffmann, M.R. (1998) Sonolytic decomposition of ozone in aqueous solution: mass transfer effects. Environmental science technology, 32(24), 3941-3947.
Wu, J.J., Yang, J.S., Muruganandham, M. and Wu, C.C. (2008) The oxidation study of 2-propanol using ozone-based advanced oxidation processes. Separation and Purification Technology, 62(1), 39-46.
Xu, X.-w., Xu, X.-h., Shi, H.-x. and Wang, D.-h. (2005) Study on US/O3 mechanism in p-chlorophenol decomposition. Journal of Zhejiang University. Science. B, 6(6), 553-558.
Zilonova, E., Solovchuk, M. and Sheu, T. (2018) Bubble dynamics in viscoelastic soft tissue in high-intensity focal ultrasound thermal therapy. Ultrasonics sonochemistry, 40, 900-911.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61016-
dc.description.abstract台灣的半導體產業發達,半導體製造過程中產生的廢水可能含有酸、鹼、鹽和其他有機化合物,而異丙醇 (Isopropanol Alcohol, IPA) 是一種無色、易揮發的有機溶劑,具有強烈的酒精氣味,廣泛應用於半導體產業的晶圓表面清洗和其它清洗過程,當排放大量含有異丙醇的廢水,可能透過生物的接觸、吸入或吸收而產生危害,還會對人體健康造成威脅。
超音波對污染物的降解有兩種反應機制,一種是污染物在空蝕氣泡內被熱裂解,另一種是在空蝕氣泡中產生氫氧自由基氧化極性的污染物。超音波和臭氧結合的系統具有許多優勢,超音波的空蝕作用增加了臭氧的傳質和分解,加上局部高溫和高壓,產生更多的氫氧自由基,可進一步氧化有機污染物。本研究探討在異丙醇濃度固定的條件下,調整超音波強度及頻率、初始pH值、臭氧曝氣流量、超音波探頭浸入水深及過氧化氫添加濃度,觀察不同操作條件下異丙醇去除率的變化。
以超音波頻率40 kHz、功率500 W、超音波探頭浸入水深5 cm、臭氧曝氣流量300 mg/hr、初始pH 10、過氧化氫添加濃度為1 mM之系統中,初始濃度250 ppm之異丙醇經120分鐘反應後可達到81.4 %的去除率。利用高效液相層析儀 (HPLC, High Performance Liquid Chromatography) 觀察到超音波搭配臭氧系統中異丙醇降解後產生副產物丙酮、甲酸及乙酸。
透過本研究所使用之降解異丙醇方法可提供未來實廠應用之參考,並期望能降低異丙醇對環境的危害。
zh_TW
dc.description.abstractWith the development of semiconductor industries in Taiwan, the wastewater contains acids, alkalis, salts, and other organic compounds. Isopropanol (IPA) is a colorless, volatile organic solvent with a strong alcohol odor. It is widely used in the semiconductor industry as a cleaning agent. When the IPA-containing wastewater is discharged, it may pose a threat to human health and our environment.
Ultrasound (US) has been used to treat wastewater in many studies. It has two reaction mechanisms for the degradation of pollutants. One is that the pollutants are thermally cracked in the cavitation bubbles, and the other is the pollutants that produce hydroxyl radical in the cavitation bubbles. The system combining ultrasound and ozone (US/O3) has many advantages. The cavitation of ultrasound increases the mass transfer and decomposition of ozone. Coupled with high temperature and high pressure, it generates more hydroxyl radicals, which can further oxidize organic pollutants. In order to understand the effects of different operating parameters, the degradation efficiency of IPA was studied and discussed by ultrasonic frequency and power, initial pH, ozone flow rate, ultrasonic probe immersion depth, and hydrogen peroxide addition concentration.
The results show that 40 kHz / 500 W of ultrasonic frequency and power, 5 cm of ultrasonic probe immersion depth, 300 mg/hr of ozone flow rate, initial pH 10, 1 mM of hydrogen peroxide concentration can reach about 81.4 % of 250 ppm IPA decomposition in 120 minutes. The degradation of IPA was investigated by using gas chromatography (GC) with flame ionization detection (FID), and high-performance liquid chromatography (HPLC) was used to observe the byproducts including acetone, formic acid and acetic acid in the ultrasonic system.
The method of degrading isopropanol used in this study can provide a reference for future applications, and it is expected to reduce the harm of isopropanol to the environment.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:41:35Z (GMT). No. of bitstreams: 1
U0001-0107202015184000.pdf: 4396877 bytes, checksum: e2af8c08471ace5099c41a55aa5f7452 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 ii
Abstract iii
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 異丙醇 3
2.1.1 異丙醇之性質及應用 3
2.1.2 異丙醇之毒性 4
2.1.3 異丙醇之分析方法 4
2.2 異丙醇之處理程序 5
2.2.1 傳統物化及生物方法 5
2.2.2 高級氧化法 6
2.3 超音波之原理及應用 10
2.4 超音波搭配臭氧及過氧化氫系統 12
2.4.1 超音波結合臭氧系統 13
2.4.2 臭氧結合過氧化氫系統 15
2.5 超音波組合系統之操作參數 16
第三章 實驗材料與方法 18
3.1 實驗內容與項目 18
3.1.1 實驗內容與架構 18
3.1.2 實驗項目 19
3.2 實驗藥品與設備 19
3.2.1 實驗藥品 19
3.2.2 實驗設備 20
3.3 分析異丙醇之儀器 21
3.3.1 氣相層析儀 21
3.3.2 高效液相層析儀 23
3.4 實驗步驟與方法 23
3.4.1 .臭氧氣體流量檢測 23
3.4.2 水中溶臭氧濃度檢測 24
3.4.3 水中過氧化氫濃度檢測 25
3.4.4 異丙醇降解實驗 25
3.4.5 異丙醇去除率計算 26
3.4.6 品質管制 26
第四章 結果與討論 28
4.1 背景實驗 28
4.2 單獨超音波系統 (US) 31
4.3 單獨臭氧系統 (O3) 32
4.4 單獨過氧化氫系統 (H2O2) 33
4.5 超音波搭配臭氧系統 (US/O3) 34
4.5.1 不同超音波功率對異丙醇去除率之影響 34
4.5.2 不同臭氧曝氣流量對異丙醇去除率之影響 36
4.5.3 不同超音波探頭浸入水深對異丙醇去除率之影響 38
4.5.4 不同初始酸鹼值對異丙醇去除率之影響 39
4.6 超音波搭配臭氧及過氧化氫系統 (US/O3/H2O2) 41
4.7 副產物之分析結果 44
4.8 各系統之去除率比較 46
4.9 實廠廢水分析結果 48
第五章 結論與建議 51
5.1 結論 51
5.2 建議 51
參考文獻 53
附錄 57
dc.language.isozh-TW
dc.title以超音波搭配臭氧及過氧化氫程序降解水中異丙醇zh_TW
dc.titleDegradation of Isopropanol in Water by US/O3/H2O2 Process
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉雅瑄(Ya-Hsuan Liou),胡景堯(Ching-Yao Hu)
dc.subject.keyword異丙醇,超音波,臭氧,氫氧自由基,zh_TW
dc.subject.keywordisopropanol,sonochemical degradation,ultrasound,ozone,hydroxyl radical,en
dc.relation.page68
dc.identifier.doi10.6342/NTU202001240
dc.rights.note有償授權
dc.date.accepted2020-07-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0107202015184000.pdf
  目前未授權公開取用
4.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved