請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60988完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江福田(Fu-Tien Chiang) | |
| dc.contributor.author | Wei-Che Huang | en |
| dc.contributor.author | 黃偉哲 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:40:03Z | - |
| dc.date.available | 2018-09-24 | |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-13 | |
| dc.identifier.citation | [1] Ames PR, Batuca JR, Muncy IJ, De La Torre IG, Pascoe-Gonzales S, Guyer K, Matsuura E, Lopez LR. omb Res. 2012 Sep;130(3):350-4.
[2] Amir O, Spivak I, Lavi I, Rahat MA. Changes in the monocytic subsets CD14(dim)CD16(+) and CD14(++)CD16(-) in chronic systolic heart failure patients. Mediators Inflamm. 2012;2012:616384. [3] Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, Ramírez C, Sabaté M, Jimenez-Quevedo P, Hernández R, Moreno R, Escaned J, Alfonso F, Bañuelos C, Costa MA, Bass TA, Macaya C. Platelet function profiles in patients with type 2 diabetes and coronary artery disease on combined aspirin and clopidogrel treatment. Diabetes. 2005 Aug;54(8):2430-5. [4] Antithrombotic Trialists’ Collaboration. Collaborative metaanalysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324:71–86. [5] Barisione C, Garibaldi S, Ghigliotti G, Fabbi P, Altieri P, Casale MC, Spallarossa P, Bertero G, Balbi M, Corsiglia L, Brunelli C. CD14CD16 monocyte subset levels in heart failure patients. Dis Markers. 2010;28(2):115-24. [6] Blann AD, Kuzniatsova N, Lip GY. Vascular and platelet responses to aspirin in patients with coronary artery disease. Eur J Clin Invest. 2013 Jan;43(1):91-9. [7] Bochenek M, Zalewski J, Sadowski J, Undas A. Type 2 diabetes as a modifier of fibrin clot properties in patients with coronary artery disease. J Thromb Thrombolysis. 2013 Feb;35(2):264-70. [8] Bornstein NM, Karepov VG, Aronovich BD, Gorbulev AY, Treves TA, Korczyn AD. Failure of aspirin treatment after stroke. Stroke 1994; 25:275–7. [9] Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM. Microparticles: biomarkers and beyond. Clin Sci (Lond). 2013 Apr;124(7):423-41. [10] Cleanthis M, Bhattacharya V, Smout J, Ashour H, Stansby G. Platelet monocyte aggregates and monocyte chemoattractant protein-1 are not inhibited by aspirin in critical limb ischaemia. Eur J Vasc Endovasc Surg. 2007 Jun;33(6):725-30. [11] Collot-Teixeira S, Martin J, McDermott-Roe C, Poston R, McGregor JL. CD36 and macrophages in atherosclerosis. Cardiovasc Res. 2007 Aug 1;75(3):468-77. [12] da Costa Martins PA, van Gils JM, Mol A, Hordijk PL, Zwaginga JJ. Platelet binding to monocytes increases the adhesive properties of monocytes by up-regulating the expression and functionality of beta1 and beta2 integrins. J Leukoc Biol. 2006;79:499 –507. [13] Diacovo TG, Puri KD, Warnock RA, Springer TA, von Andrian UH. Platelet-mediated lymphocyte delivery to high endothelial venules. Science. 1996;273:252–255. [14] Eikelboom JW, Hankey GJ. Aspirin resistance: a new independent predictor of vascular events? J Am Coll Cardiol 2003; 41:966–8. [15] Elalamy I, Chakroun T, Gerotziafas GT, Petropoulou A, Robert F, Karroum A, Elgrably F, Samama MM, Hatmi M. Circulating platelet-leukocyte aggregates: a marker of microvascular injury in diabetic patients. Thromb Res. 2008;121(6):843-8. [16] Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem. 1993 Jun 5;268(16):11811-6. [17] Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation and lipid metabolism. J Clin Invest 2001;108:785–91. [18] Feng B, Chen Y, Luo Y, Chen M, Li X, Ni Y. Circulating level of microparticles and their correlation with arterial elasticity and endothelium-dependent dilation in patients with type 2 diabetes mellitus. Atherosclerosis. 2010 Jan;208(1):264-9. [19] Gresele P, Marzotti S, Guglielmini G, Momi S, Giannini S, Minuz P, Lucidi P, Bolli GB. Hyperglycemia-induced platelet activation in type 2 diabetes is resistant to aspirin but not to a nitric oxide-donating agent. Diabetes Care. 2010 Jun;33(6):1262-8. [20] Hankle GJ, Eikelboom JW. Aspirin resistance. Lancet 2006;367:606–17. [21] Harmon CM, Luce P, Abumrad NA. Labelling of an 88 kDa adipocyte membrane protein by sulpho-N-succinimidyl long-chain fatty acids: inhibition of fatty acid transport. Biochem Soc Trans. 1992 Nov;20(4):811-3. [22] Hou H, Ge Z, Ying P, Dai J, Shi D, Xu Z, Chen D, Jiang Q. Biomarkers of deep venous thrombosis. J Thromb Thrombolysis. 2012 Oct;34(3):335-46. [23] Kennedy DJ, Kuchibhotla S, Westfall KM, Silverstein RL, Morton RE, Febbraio M. A CD36-dependent pathway enhances macrophage and adipose tissue inflammation and impairs insulin signalling. Cardiovasc Res. 2011 Feb 15;89(3):604-13. [24] Koonen DP, Jacobs RL, Febbraio M, Young ME, Soltys CL, Ong H, Vance DE, Dyck JR. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes. 2007 Dec;56(12):2863-71. [25] Lai PT, Chen SY, Lee YS, Ho YP, Chiang YY, Hsu HY. Relationship between acute stroke outcome, aspirin resistance, and humoral factors. J Chin Med Assoc. 2012 Oct;75(10):513-8. [26] Le Guyader A, Pacheco G, Seaver N, Davis-Gorman G, Copeland J, McDonagh PF. Inhibition of platelet GPIIb-IIIa and P-selectin expression by aspirin is impaired by stress hyperglycemia. J Diabetes Complications. 2009 Jan-Feb;23(1):65-70. [27] Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, Lee KM, Kim JI, Markmann JF, Marinelli B, Panizzi P, Lee WW, Iwamoto Y, Milstein S, Epstein-Barash H, Cantley W, Wong J, Cortez-Retamozo V, Newton A, Love K, Libby P, Pittet MJ, Swirski FK, Koteliansky V, Langer R, Weissleder R, Anderson DG, Nahrendorf M. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol. 2011 Oct 9;29(11):1005-10. [28] Ley K. The role of selectins in inflammation and disease. Trends Mol Med. 2003 Jun;9(6):263-8. [29] Malinin AI, Atar D, Callahan KP, McKenzie ME, Serebruany VL. Effect of a single dose aspirin on platelets in humans with multiple risk factors for coronary artery disease. Eur J Pharmacol. 2003 Feb 21;462(1-3):139-43. [30] McEver RP. Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb Haemost. 2001 Sep;86(3):746-56. [31] Miller TW, Isenberg JS, Shih HB, Wang Y, Roberts DD. Amyloid-beta inhibits No-cGMP signaling in a CD36- and CD47-dependent manner. PLoS One. 2010;5(12):e15686. [32] Mine S, Okada Y, Tanikawa T, Kawahara C, Tabata T, Tanaka Y. Increased expression levels of monocyte CCR2 and monocyte chemoattractant protein-1 in patients with diabetes mellitus. Biochem Biophys Res Commun. 2006 Jun 9;344(3):780-5. [33] Miszti-Blasius K, Debreceni IB, Felszeghy S, Dezso B, Kappelmayer J. Lack of P-selectin glycoprotein ligand-1 protects mice from thrombosis after collagen/epinephrine challenge. Thromb Res. 2011 Mar;127(3):228-34. [34] Mobarrez F, Antovic J, Egberg N, Hansson M, Jörneskog G, Hultenby K, Wallén H. A multicolor flow cytometric assay for measurement of platelet-derived microparticles. Thromb Res. 2010 Mar;125(3):e110-6. [35] Nauli AM, Nassir F, Zheng S, Yang Q, Lo CM, Vonlehmden SB, Lee D, Jandacek RJ, Abumrad NA, Tso P. CD36 is important for chylomicron formation and secretion and may mediate cholesterol uptake in the proximal intestine. Gastroenterology. 2006 Oct;131(4):1197-207. [36] Nergiz-Unal R, Lamers MM, Van Kruchten R, Luiken JJ, Cosemans JM, Glatz JF, Kuijpers MJ, Heemskerk JW. Signaling role of CD36 in platelet activation and thrombus formation on immobilized thrombospondin or oxidized low-density lipoprotein. J Thromb Haemost. 2011 Sep;9(9):1835-46. [37] Palabrica T, Lobb R, Furie BC, Aronovitz M, Benjamin C, Hsu YM, Sajer SA, Furie B. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature. 1992 Oct 29;359(6398):848-51. [38] Patiño R, Ibarra J, Rodriguez A, Yagüe MR, Pintor E, Fernandez-Cruz A, Figueredo A. Circulating monocytes in patients with diabetes mellitus, arterial disease, and increased CD14 expression. Am J Cardiol. 2000 Jun 1;85(11):1288-91. [39] Patrono C, Coller B, Fitzgerald GA, et al. Platelet active drugs: the relationships among dose, effectiveness, and side-effects. Chest. 2004;126:234S–264S. [40] Poitou C, Dalmas E, Renovato M, Benhamo V, Hajduch F, Abdennour M, Kahn JF, Veyrie N, Rizkalla S, Fridman WH, Sautès-Fridman C, Clément K, Cremer I. CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arterioscler Thromb Vasc Biol. 2011 Oct;31(10):2322-30. [41] Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Lancet. 1988;2:349–360. [42] Roberts W, Magwenzi S, Aburima A, Naseem KM. Thrombospondin-1 induces platelet activation through CD36-dependent inhibition of the cAMP/protein kinase A signaling cascade. Blood. 2010 Nov 18;116(20):4297-306. [43] Sacco M, Pellegrini F, Roncaglioni MC, Avanzini F, Tognoni G, Nicolucci A; PPP Collaborative Group. Primary prevention of cardiovascular events with low-dose aspirin and vitamin E in type 2 diabetic patients: results of the Primary Prevention Project (PPP) trial. Diabetes Care. 2003 Dec;26(12):3264-72. [44] Sako D, Chang XJ, Barone KM, Vachino G, White HM, Shaw G, Veldman GM, Bean KM, Ahern TJ, Furie B, et al. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell. 1993 Dec 17;75(6):1179-86. [45] Shantsila E, Watson T, Lip GY. Aspirin resistance: what, why and when? Thromb Res. 2007;119(5):551-4. [46] Shattil SJ, Hoxie JA, Cunningham M, Brass LF. Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation. J Biol Chem. 1985 Sep 15;260(20):11107-14. [47] Sudic D, Razmara M, Forslund M, Ji Q, Hjemdahl P, Li N. High glucose levels enhance platelet activation: involvement of multiple mechanisms. Br J Haematol. 2006 May;133(3):315-22. [48] Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998;93:241– 52. [49] Viñals M, Bermúdez I, Llaverias G, Alegret M, Sanchez RM, Vázquez-Carrera M, Laguna JC. Aspirin increases CD36, SR-BI, and ABCA1 expression in human THP-1 macrophages. Cardiovasc Res. 2005 Apr 1;66(1):141-9. [50] Wrigley BJ, Shantsila E, Tapp LD, Lip GY. CD14++CD16+ monocytes in patients with acute ischaemic heart failure. Eur J Clin Invest. 2013 Feb;43(2):121-30. [51] Xu ZH, Jiao JR, Yang R, Luo BY, Wang XF, Wu F. J Int Med Res. 2012;40(1):282-92. [52] Yago T, Tsukuda M, Minami M. P-selectin binding promotes the adhesion of monocytes to VCAM-1 under flow conditions. J Immunol. 1999;163:367–373. [53] Yang J, Sambandam N, Han X, Gross RW, Courtois M, Kovacs A, Febbraio M, Finck BN, Kelly DP. CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res. 2007 Apr 27;100(8):1208-17. [54] Yuasa-Kawase M, Masuda D, Yamashita T, Kawase R, Nakaoka H, Inagaki M, Nakatani K, Tsubakio-Yamamoto K, Ohama T, Matsuyama A, Nishida M, Ishigami M, Kawamoto T, Komuro I, Yamashita S. Patients with CD36 deficiency are associated with enhanced atherosclerotic cardiovascular diseases. J Atheroscler Thromb. 2012;19(3):263-75. [55] Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol. 2007 Mar;81(3):584-92. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60988 | - |
| dc.description.abstract | 簡介: 阿斯匹靈經常用於預防初發或次發的冠心症,避免心臟血管發生阻塞而產生心肌梗塞的情況,然而阿斯匹靈抑制血小板的功能對於糖尿病患卻不顯著,稱之為阿斯匹靈抗藥性,在此研究中,我們將找出糖尿病患之阿斯匹靈抗藥性是否與其血小板表面標記、單核球表面標記與其釋放出的微粒體有關連。
方法: 總共有70名心血管病患受試者參與這次的研究,糖尿病患有24名,其中有6名具有阿斯匹靈抗藥性,非糖尿病患有46名,其中有8名具有阿斯匹靈抗藥性。 此研究共採集兩次血液,第一次採集尚未服用阿斯匹靈的血液,之後須連續至少服用2週的阿斯匹靈後採集第二次的血液。所有受試者皆服用每天一顆100毫克的阿斯匹靈 Bokey EM /cap 100 mg or Tapal/tab 100 mg )。我們使用血小板功能分析儀PFA-100測定血小板的凝集時間,使用流式細胞儀flow cytometry來檢驗血小板與單核球表面的標記: CD62p (P-selectin), PAC-1, CD31, CD42a, CD14 and CD62E。 結果: 在服用阿斯匹靈至少2週後發現,糖尿病患具有阿斯匹靈抗藥性者其血小板上的PAC-1表現量比起尚未服藥前大幅增加 (0.12±0.05, 0.03±0.04, p<0.05 ),而在糖尿病患中活化的內皮細胞所釋放的微粒體在服藥後大幅的減少(171.30±79.00, 237.73±123.82, p<0.05)。 結論: 糖尿病患具有阿斯匹靈抗藥性與血小板的表面受器PAC-1有關,儘管阿斯匹靈在抑制糖尿病患的血小板效果不佳,但在所有的心血管病患中,包含糖尿病患在內,阿斯匹靈仍具有顯著的保護血管系統的作用。 | zh_TW |
| dc.description.abstract | Introduction: Aspirin is integral in the primary and secondary prevention of coronary artery disease and acute coronary syndrome. However, the effect of aspirin on antiplatelet is not very well in diabetes called aspirin resistance (AR). In this study, we investigate whether AR in diabetes is associated with platelet surface receptors, monocyte surface receptors and microparticle.
Materials and methods: A total of 70 patients with cardiovascular disease were enrolled. Twenty-four patients had diabetes and six of them had AR. Forty-six patients were diabetes and eight of them were AR. Blood samples were obtained twice for this study, first at baseline (pre-ASA), and second was after at least two weeks following the post-ASA. All subjects received one 100 mg aspirin. (Bokey EM /cap 100 mg or Tapal/tab 100 mg ). We use the PFA-100 to evaluate platelet aggregation and flow cytometry to evaluate CD62p (P-selectin), PAC-1, CD31, CD42a, CD14 and CD62E. Results: The PAC-1 expression was enhanced in diabetes with AR in post-aspirin than in pre-aspirin (0.12±0.05, 0.03±0.04, p<0.05). The CD62E counts reduced in post-aspirin compared to pre-aspirin (171.30±79.00, 237.73±123.82, p<0.05). Conclusion: AR in diabetes is associated with high PAC-1 expression. Although the effect of aspirin on antiplatelet is not very well in diabetes, it still is a vasoprotective agent for CVD. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:40:03Z (GMT). No. of bitstreams: 1 ntu-102-R00441012-1.pdf: 762826 bytes, checksum: 2b3238acaf3d3a591b1b1f7239e17acc (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Contents I
Contents of Tables II Contents of Figures III 摘要 IV ABSTRACT V Chapter 1 Introduction 1 Chapter 2 Materials and Methods 9 2.1 Subject 9 2.2 Platelet aggregation 9 2.3 Flow cytometry 10 2.4 Statistical analysis 10 Chapter 3 Result 11 3.1 Patients characteristics 11 3.2 Effect of aspirin on leukocyte platelet aggregation 11 3.3 Induction of CD36, CD14, CD16 and CCR2 expression on monocytes 11 3.4 Induction of CD36, PAC-1 and P-selectin expression on platelet 12 3.5 Induction of microparticle in CD62E, CD62p, CD14 and CD31, CD42a 12 Chapter 4 Discussion 13 Chapter 5 Conclusion 14 Reference 15 | |
| dc.language.iso | en | |
| dc.subject | 阿斯匹靈抗藥性 | zh_TW |
| dc.subject | 糖尿病 | zh_TW |
| dc.subject | PAC-1 | zh_TW |
| dc.subject | CD62E | zh_TW |
| dc.subject | Diabetes | en |
| dc.subject | Aspirin resistance | en |
| dc.subject | PAC-1 | en |
| dc.subject | CD62E | en |
| dc.title | 糖尿病合併阿斯匹靈抗藥性之病患與血小板表面標記、單核球表面標記與細胞微粒之關聯性研究 | zh_TW |
| dc.title | Association Study of Aspirin Resistance with Platelet Surface Markers, Monocyte Surface Markers and Microparticles in Diabetes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅仕錡(Shih-Chi Lo),莊志明(Jyh-Ming Juang) | |
| dc.subject.keyword | 糖尿病,阿斯匹靈抗藥性,PAC-1,CD62E, | zh_TW |
| dc.subject.keyword | Diabetes,Aspirin resistance,PAC-1,CD62E, | en |
| dc.relation.page | 46 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 744.95 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
