請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60976
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉開溫(Kai-Wun Yeh) | |
dc.contributor.author | Shun-Te Wang | en |
dc.contributor.author | 王順德 | zh_TW |
dc.date.accessioned | 2021-06-16T10:39:25Z | - |
dc.date.available | 2017-08-16 | |
dc.date.copyright | 2013-08-16 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-13 | |
dc.identifier.citation | 吳佩穎 (2012)。維他命C與一氧化氮於文心蘭及阿拉伯芥開花過程之協同作用。國立台灣大學植物科學研究所碩士論文。
黃敏展 (1978)。蘭花栽培藝術。自然科學文化出版社。352頁。 張育森 (1996)。園藝科技術語。農業科學資料服務中心。148頁。 Teob, E S (1980). Orchids of Asia. Times Books International, Singapore. Page 317 Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-399. Apse, M.P. (1999). Salt Tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285, 1256-1258. Ashraf, M., and Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206-216. Barragan, V., Leidi, E.O., Andres, Z., Rubio, L., De Luca, A., Fernandez, J.A., Cubero, B., and Pardo, J.M. (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24, 1127-1142. Bassil, E., Tajima, H., Liang, Y.C., Ohto, M.A., Ushijima, K., Nakano, R., Esumi, T., Coku, A., Belmonte, M., and Blumwald, E. (2011a). The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23, 3482-3497. Bassil, E., Ohto, M.A., Esumi, T., Tajima, H., Zhu, Z., Cagnac, O., Belmonte, M., Peleg, Z., Yamaguchi, T., and Blumwald, E. (2011b). The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell 23, 224-239. Ben-Ari, G. (2012). The ABA signal transduction mechanism in commercial crops: learning from Arabidopsis. Plant Cell Rep. 31, 1357-1369. Bjellqvist, B., Basse, B., Olsen, E., and Celis, J.E. (1994). Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis 15, 529-539. Blackwell, T., Bowerman, B., Priess, and Weintraub, H. (1994). Formation of a monomeric DNA binding domain by Skn-1 bZIP and homeodomain elements. Science 266, 621-628. Blaha, G., Stelzl, U., Spahn, C.M., Agrawal, R.K., Frank, J., and Nierhaus, K.H. (2000). Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol. 317, 292-309. Blumwald, E., Aharon, G.S., and Apse, M.P. (2000). Sodium transport in plant cells. Biochim. Biophys. Acta 1465, 140-151. Brett, C.L., Donowitz, M., and Rao, R. (2005). Evolutionary origins of eukaryotic sodium/proton exchangers. Am. J. Physiol. 288, C223-C239. Chang, A.B., Lin, R., Keith Studley, W., Tran, C.V., and Saier, M.H., Jr. (2004). Phylogeny as a guide to structure and function of membrane transport proteins. Mol. Membr. Biol. 21, 171-181. Chanroj, S., Wang, G., Venema, K., Zhang, M.W., Delwiche, C.F., and Sze, H. (2012). Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants. Front Plant Sci 3, 25. Chanroj, S., Lu, Y., Padmanaban, S., Nanatani, K., Uozumi, N., Rao, R., and Sze, H. (2011). Plant-specific cation/H+ exchanger 17 and its homologs are endomembrane K+ transporters with roles in protein sorting. J. Biol. Chem. 286, 33931-33941. Davletova, S., Schlauch, K., Coutu, J., and Mittler, R. (2005a). The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol. 139, 847-856. Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., and Mittler, R. (2005b). Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17, 268-281. Dunn, M.A., White, A., Vural, S., and Hughes, M. (1998). Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol. Biol. 38, 551-564. Fukuda, A., Nakamura, A., Hara, N., Toki, S., and Tanaka, Y. (2011). Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 233, 175-188. Gaxiola, R.A., Rao, R., Sherman, A., Grisafi, P., Alper, S.L., and Fink, G.R. (1999). The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc. Natl. Acad. Sci. USA 96, 1480-1485. Gaxiola, R.A., Li, J., Undurraga, S., Dang, L.M., Allen, G.J., Alper, S.L., and Fink, G.R. (2001). Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc. Natl. Acad. Sci. USA 98, 11444-11449. Gurley, W.B., and Key, J.L. (1991). Transcriptional regulation of the heat-shock response: a plant perspective. Biochemistry 30, 1-12. Hew, C.S., and Yong, W.H. (1993). Growth and photosynthesis studies of Oncidium orchid. HortScience 28, 448. Horie, T., Hauser, F., and Schroeder, J.I. (2009). HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci. 14, 660-668. Huang, G.T., Ma, S.L., Bai, L.P., Zhang, L., Ma, H., Jia, P., Liu, J., Zhong, M., and Guo, Z.F. (2012). Signal transduction during cold, salt, and drought stresses in plants. Mol. Biol. Rep. 39, 969-987. Itzhaki, H., Maxson, J.M., and Woodson, W.R. (1994). An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene. Proc. Natl. Acad. Sci. USA 91, 8925-8929. Klingler, J.P., Batelli, G., and Zhu, J.-K. (2010). ABA receptors: the START of a new paradigm in phytohormone signalling. J. Exp. Bot. 61, 3199-3210. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L.L. (2001). Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305, 567-580. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P., and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30, 325-327. Möller, S., Croning, M.D.R., and Apweiler, R. (2001). Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17, 646-653. Miller, G., Suzuki, N., Ciftci-Yilmaz, S., and Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33, 453-467. Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H., and Shibuya, N. (2007). CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 104, 19613-19618. Moller, I.S., and Tester, M. (2007). Salinity tolerance of Arabidopsis: a good model for cereals? Trends Plant Sci. 12, 534-540. Moon, H., Lee, B., Choi, G., Shin, D., Prasad, D.T., Lee, O., Kwak, S.S., Kim, D.H., Nam, J., Bahk, J., Hong, J.C., Lee, S.Y., Cho, M.J., Lim, C.O., and Yun, D.J. (2003). NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. USA 100, 358-363. Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytol. 167, 645-663. Nass, R., Cunningham, K.W., and Rao, R. (1997). Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase: insights into mechanisms of sodium tolerance. J. Biol. Chem. 272, 26145-26152. Ng, C.K.Y., and Hew, C.S. (2000). Orchid pseudobulbs – `false' bulbs with a genuine importance in orchid growth and survival! Sci Hortic 83, 165-172. Pasapula, V., Shen, G., Kuppu, S., Paez-Valencia, J., Mendoza, M., Hou, P., Chen, J., Qiu, X., Zhu, L., Zhang, X., Auld, D., Blumwald, E., Zhang, H., Gaxiola, R., and Payton, P. (2011). Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol. J. 9, 88-99. Pastuglia, M., Roby, D., Dumas, C., and Cock, J.M. (1997). Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell 9, 49-60. Quintero, F.J., Blatt, M.R., and Pardo, J.M. (2000). Functional conservation between yeast and plant endosomal Na+/H+ antiporters. FEBS Lett. 471, 224-228. Rabbani, M.A., Maruyama, K., Abe, H., Khan, M.A., Katsura, K., Ito, Y., Yoshiwara, K., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133, 1755-1767. Rodríguez-Rosales, M.P., Gálvez, F.J., Huertas, R., Aranda, M.N., Baghour, M., Cagnac, O., and Venema, K. (2009). Plant NHX cation/proton antiporters. Plant Signal Behav 4, 265-276. Rouster, J., Leah, R., Mundy, J., and Cameron-Mills, V. (1997). Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J. 11, 513-523. Saier, M.H., Jr., Yen, M.R., Noto, K., Tamang, D.G., and Elkan, C. (2009). The transporter classification database: recent advances. Nucleic Acids Res. 37, D274-D278. Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18, 1292-1309. Sato, Y., and Sakaguchi, M. (2005). Topogenic properties of transmembrane segments of Arabidopsis thaliana NHX1 reveal a common topology model of the Na+/H+ exchanger family. J. Biochem 138, 425-431. Shi, H. (2002). The Putative Plasma Membrane Na+/H+ Antiporter SOS1 Controls Long-Distance Na+ Transport in Plants. Plant Cell 14, 465-477. Shi, H., and Zhu, J.K. (2002). Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol. Biol. 50, 543-550. Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58, 221-227. Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6, 410-417. Slama, I., Ghnaya, T., Hessini, K., Messedi, D., Savouré, A., and Abdelly, C. (2007). Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environ. Exp. Bot. 61, 10-17. Szabados, L., and Savoure, A. (2010). Proline: a multifunctional amino acid. Trends Plant Sci. 15, 89-97. Takaiwa, F., Yamanouchi, U., Yoshihara, T., Washida, H., Tanabe, F., Kato, A., and Yamada, K. (1996). Characterization of common cis-regulatory elements responsible for the endosperm-specific expression of members of the rice glutelin multigene family. Plant Mol. Biol. 30, 1207-1221. Thomas, T.L. (1993). Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5, 1401-1410. Urao, T., Yamaguchi-Shinozaki, K., Urao, S., and Shinozaki, K. (1993). An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5, 1529-1539. Venema, K., Quintero, F.J., Pardo, J.M., and Donaire, J.P. (2002). The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. J. Biochem 277, 2413-2418. Washida, H., Wu, C.-Y., Suzuki, A., Yamanouchi, U., Akihama, T., Harada, K., and Takaiwa, F. (1999). Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol. Biol. 40, 1-12. Wu, S.J., Ding, L., and Zhu, J.K. (1996). SOS1, a Genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8, 617-627. Xiong, L., and Zhu, J.K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25, 131-139. Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264. Yamaguchi-Shinozaki, K., and Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 10, 88-94. Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold Stresses. Annu. Rev. Plant Biol. 57, 781-803. Yamaguchi, T., and Blumwald, E. (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci. 10, 615-620. Yamaguchi, T., Apse, M.P., Shi, H., and Blumwald, E. (2003). Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. Proc. Natl. Acad. Sci. USA 100, 12510-12515. Yokoi, S., Quintero, F.J., Cubero, B., Ruiz, M.T., Bressan, R.A., Hasegawa, P.M., and Pardo, J.M. (2002). Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J. 30, 529-539. Yoo, J.H., Park, C.Y., Kim, J.C., Heo, W.D., Cheong, M.S., Park, H.C., Kim, M.C., Moon, B.C., Choi, M.S., Kang, Y.H., Lee, J.H., Kim, H.S., Lee, S.M., Yoon, H.W., Lim, C.O., Yun, D.J., Lee, S.Y., Chung, W.S., and Cho, M.J. (2005). Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in arabidopsis. J. Biol. Chem. 280, 3697-3706. Yoshida, K., Kawachi, M., Mori, M., Maeshima, M., Kondo, M., Nishimura, M., and Kondo, T. (2005). The involvement of tonoplast proton pumps and Na+(K+)/H+ exchangers in the change of petal color during flower opening of Morning Glory, Ipomoea tricolor cv. Heavenly Blue. Plant Cell Physiol. 46, 407-415. Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247-273. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60976 | - |
dc.description.abstract | 本研究以南西品系文心蘭作為材料,探討的鈉氫離子反向運輸蛋白 (NHX, Na+/H+ exchanger) 是否參與了文心蘭對抗滲透壓逆境的分子機制。NHX為植物細胞中重要的離子運輸蛋白。可以交換等量正一價的陽離子以及氫離子穿過細胞的膜狀構造。其位置可能在液胞膜、高基氏體或是細胞膜上,並參與細胞內pH值調節、鉀離子及鈉離子的平衡,因此與植物對滲透壓逆境的耐受性有關。目前NHX已經被成功轉殖至多種作物,並改善植物對於鹽鹼環境的耐受性。文心蘭則為台灣重要的切花外銷作物,在自然環境中為附生性植物 (epiphyte),對於滲透壓逆境有著相當高的耐受性。
我們首先從南西文心蘭的基因轉錄體資料庫中 (transcriptome database)中釣取兩條NHX核酸序列並命名為OgNHX1以及OgNHX6。藉由RT-PCR以及realtime-PCR檢測,發現這兩個基因在文心蘭的各個部位皆有相近的表現量。OgNHX1和OgNHX6的表現量不會受到外加鹽逆境或是過氧化氫的誘導,但在幼年時期的組織表現量較高。接著我們釣取這兩個基因的啟動子,並掛載報導基因轉入阿拉伯芥。發現轉植株的GUS活性在幼年阿拉伯芥活性較強,且會受到外加鹽逆境的誘導,最後我們也將OgNHX1以及OgNHX6轉入阿拉伯芥大量表現。雖然轉植株的根長和側根數有些微的減少,但外表型和耐鹽性皆與對照組無顯著差異。因此推測OgNHX1和OgNHX6的生理功能和過去報導能夠對抗鹽逆境的NHXs有所不同 | zh_TW |
dc.description.abstract | Oncidium Gower Ramsey is one of the most important horticulture export product in Taiwan. Most of species from Orchidaceae family, including Oncidium Gower Ramsey, are originated in tropical areas Thus they have several special structures corresponding to drought environments.
Plant constantly challenged by external abiotic stress including drought, cold and salinity. In order to adapt to osmotic unbalance resulted from these abiotic stresses, plant evolved several special mechanisms to adjust its internal ion distribution such as NHXs cation/H+ antiporters. In previous studies, NHXs had considered as important regulators in respond to salinity stress. We identified two putative NHX genes from Oncidium Gower Ramsey named “OgNHX1” and “OgNHX6”. These two genes expressed equally in different parts of Oncidium tissues, and surprisedly, unchanged under external salt or hydrogen peroxide treatment. The phenotypes of transgenic Arabidopsis overexpressing OgNHX1/6 showed no differentces comparing to wild-type plants when grown in salnity environment. However the results from stage-dependent realtime-PCR and promoter-GUS analysis suggest possible connections between OgNHXs and plant development. Our results suggest the functions of OgNHX1 and OgNHX6 are atypical to pervious studies, in which consider NHXs as efficient candicates to generate salt-tolerant plants. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:39:25Z (GMT). No. of bitstreams: 1 ntu-102-R00b42006-1.pdf: 2828813 bytes, checksum: 1fcd0b34e26e0bdda8bf5498eee43074 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 致謝 ii
目錄 iv 圖表目錄 vi 附錄目錄 vii 中文摘要 viii 英文摘要 ix 第一章 前言 1 第一節 文心蘭概述 1 第二節 植物NHX antiporter的介紹 2 第三節 鹽度對植物的影響 6 第四節 本論文研究目的 14 第二章 材料與方法 15 第一節:實驗材料 15 第二節:基因表現量測定 15 第三節:載體構築及其他基本分生技術 19 第四節:基因全長釣取及啟動子釣取 25 第五節:阿拉伯芥種植、轉殖及處理 35 第六節:GUS報導基因的染色及測定 37 第三章 結果 40 第一節:文心蘭NHX基因的釣取與序列分析 40 第二節:文心蘭內生性OgNHX1和OgNHX6表現量檢定 41 第三節:文心蘭內生性OgNHX1和OgNHX6在鹽處理下的表現量檢定 42 第四節:文心蘭內生性OgNHX1和OgNHX6在過氧化氫處理下的表現量檢定 42 第五節:阿拉伯芥OgNHX1和OgNHX6轉殖株的建立與觀察 43 第六節:阿拉伯芥OgNHX1和OgNHX6轉殖株在高鹽環境的生長情形 44 第七節:啟動子釣取與序列分析 45 第八節:阿拉伯芥pOgNHX1::GUS和pOgNHX6::GUS轉殖株建立與染色觀察 45 第九節:阿拉伯芥pOgNHX1::GUS和pOgNHX6::GUS轉殖株受鹽逆境的誘導 46 第四章 討論 48 第一節:OgNHXs的親緣性分析 48 第二節:OgNHX1與鹽逆境的關係 49 第三節:文心蘭OgNHX1的啟動子序列與調控 51 第四節:OgNHX1與植物生長發育的關係 52 第五節:文心蘭NHX6的啟動子序列與調控 54 第六節:OgNHX6在文心蘭中所扮演的角色 55 未來展望 57 參考文獻 58 圖表 68 附錄 86 | |
dc.language.iso | zh-TW | |
dc.title | 南西文心蘭鈉氫離子反向運輸蛋白OgNHX1及OgNHX6之功能性探討 | zh_TW |
dc.title | Functional study of Na+/H+ exchangers OgNHX1 and OgNHX6 from Oncidium Gower Ramsey | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王淑珍(Shu-Jen Wang),葉信宏(Hsin-Hung Yeh),陳仁治(Jen-Chih Chen),張英?(Ing-Feng Chang) | |
dc.subject.keyword | NHX 離子反向運輸蛋白,南西文心蘭,耐鹽,非生物逆境,離子平衡, | zh_TW |
dc.subject.keyword | NHX antiporters,Oncidium Gower Ramsey,Salt tolerance,Abiotic stresses,ion equilibrium, | en |
dc.relation.page | 94 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-13 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 2.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。