Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60969
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹穎雯
dc.contributor.authorChien-Ju Linen
dc.contributor.author林茜如zh_TW
dc.date.accessioned2021-06-16T10:39:03Z-
dc.date.available2013-08-20
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-13
dc.identifier.citation[1] P.D. Cady, R.E. Weyers, “Chloride penetration and the deterioration of concrete bridge decks”, Cement & Concrete Aggregate, Vol. 5, pp. 81–87, 1983.
[2] T.U. Mohammed, H. Hamada, “Relationship between free chloride and total chloride contents in concrete”, Cement & Concrete Research, Vol. 33, pp. 1487–1490, 2003.
[3] R.K. Dhir, M.A.K. El-Mohr, T.D. Dyer,“Chloride binding in GGBS concrete”, Cement & Concrete Research, Vol. 26, pp. 1767–1773, 1996.
[4] C. Arya, Y. Xu, “Effect of cement type on chloride binding and corrosion of steel in concrete”, Cement & Concrete Research, Vol. 25, pp. 893–902, 1995.
[5] R.K. Dhir, M.A.K. El-Mohr, T.D. Dyer , “Developing chloride resisting concrete using PFA”, Cement & Concrete Research,Vol. 27, pp. 1633–1639, 1997.
[6] R.K. Dhir, M.R. Jones, “Development of chloride-resisting concrete using fly ash”, Fuel”, Vol. 78 , pp. 137–142, 1999.
[7] R.D. Hooton, P.F. McGrath, “Processing of RULEM Workshop on Chloride Penetration into Concrete”, L.O. Nilsson, J.P. Ollivier (Eds), pp.388, 1997.
[8] “Chloride Resistance of Concrete”, Cement Concrete & Aggregates Australia ,June, 2009,
http://www.concrete.net.au/publications/pdf/ChlorideResistance.pdf .
[9] A.M. Neville, “Properties of Concrete”, 4th Ed., Longman, New York, 1996.
[10] K.Y. Ann, J.H. Ahn, J.S Ryou, “The important of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete”, Construction and Building Materials, Vol.23, pp239-245, 2008.
[11] Mario Collepardi, Aldo Marcialis, Renato Turriziani,“Penetration of chloride ions into cement pastes and concretes”,Journal of the American Ceramic Society, Vol. 55, Issue 10, pp.534-535, 1972.
[12] PK Mehta, PJM. Monteito , “Concrete structure properties and materials”, 2nd ed. Prentice Hall, 1993.
[13] SE Hussain, S. Rasheeduzafar, “Corrosion resistance performance of fly ash blended cement concrete”, ACI Mater J, pp.264-273, 1994.
[14] R.K. Dhir, M.A.K. El-Mohr, T.D. Dyer, “Chloride binding in GGBS concrete”,Cement & Concrete Research, Vol. 26, pp. 1767–1773, 1996.
[15] R. Luo, Y. Cai, C. Wang, X. Huang, “Study of chloride binding and diffusion in GGBS concrete”, Cement & Concrete Research, Vol. 33,pp. 1–7, 2003.
[16] Faguang Leng, Naiqian Feng, Xinying Lu ,“ An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete”,Cement and Concrete Research, Volume 30, Issue 6, Pages 989-992, June, 2000.
[17] Q. Feng, “High-Performance ConcreteBuilding Industry Press”, Beijing, 1996.
[18] N.R. Buenfeld, E. Okundi, “Effect of cement content on transport in concrete”, Magazine of Concrete Research, Vol. 50, pp. 339–351, 1998.
[19] W. Chalee, P. Ausapanit, C. Jaturapitakkul , “Utilization of fly ash concrete in marine environment for long term design life analysis”, Materials & Design, Volume 31, Issue 3, pp. 1242-1249, March, 2010.
[20] P.B. Bamforth, “The derivation of input data for modeling chloride ingress from eight-years UK coastal exposure trials” , Magazine of Concrete Research ,Vol. 51, pp. 87–96, 1999.
[21] PB Bamforth, WF. Price, “Factors influencing chloride ingress into marine structures”. In: Dhir RK, Jones MR, editors. Concrete 2000, pp. 1105–18, 1993.
[22] Maher A Bad, “Performance of concrete in a coastal environment”, Cement and Concrete Composites, Volume 25, Issues 4–5, pp. 539-548, May–July, 2003.
[23] T.C Powers, L.E Copeland, J.C Haynes, H.M Mann , “Permeability of portland cement paste”,J. Amer. Concr. Inst. Proc., Vol. 51, pp. 285–298, 1954.
[24] H. Grafe, H. Grube, “The influence of curing on the gas permeability of concrete with different compositions. In: Proceedings, RILEM Seminar on the Durability of Concrete Structures under Normal Outdoor Exposure”, Hanover University, pp. 80–87, 1984.
[25] Rasheeduzzafar, A.S Al-Gahtani, S.S Al-Saadoun, “Influence of construction practices on concrete durability”, ACI Mater. J., pp. 566–575, 1989.
[26] Broderson HA. Zur Abhangigkeit der Transportvorgange Verschiedener lonen im Beton von Struktur und Zusammensetzung des Zemantsteines. Dissertation, RWTH Aachen 1982 and also Beton-lnformationem; 23:36–38, 1983.
[27] Bakker RFM. Uber die Ursache des erhohten Widerstands von Beton mit Hochofenzement gegen die Alkali-Kieselsaurereaktion und den Sulfatangriff, dissertation, RWTH Aachen, pp. 119, 1980.
[28] Van Yperen L, Sluijter WL. De Diffusionsnelheid von calcium–chloride in een Cement-Zaandmortel als Functie van de Verhardingstijd en de Contacttijd, TN0 Report N. Bl-70-29, Planning Committee for Building Research TNO, Delft, 1970.
[29] C.L Page, N.R Short, A El-Tarras, “Diffusion of chloride ions in hardened cement pastes”, Cement Concrete Research, Vol. 11, No. 3, pp. 295–406,1980.
[30] P.K Mehta, “Studies on chemical resistance of low water/cement ratio concrete”,
Cement Concrete Research, Vol. 15, No. 6, pp. 969–978, 1985.
[31] S. Goto, D.M Roy, “The effect of w/c ratio and curing temperature on the permeability of hardened cement paste ”, Cement Concrete Research, p. 575 , 1981.
[32] S.S Al-Saadoun, Rasheeduzzafar, A.S Al-Gahtani,“ Mix design considerations for durable concrete in the Arabian Gulf environment”, Arabian J. Sci. Eng., Vol. 17,No. 1, pp. 17–33, 1992.
[33] PK.Mehta, “Durability of concrete in marine environment: a review. Performance of Concrete in Marine Environment”, ACI Publication, SP-65; pp. 1, 1986.
[34] How-Ji Chen, Shao-Siang Huang, Chao-Wei Tang, M.A. Malek, Lee-Woen Ean ,“ Effect of curing environments on strength, porosity and chloride ingress resistance of blast furnace slag cement concretes: A construction site study ”,Construction and Building Materials, Volume 35, pp. 1063-1070, October, 2012.
[35] ASTM G140-02, “Standard test method for determining atmospheric chloride deposite rate by wet candle method”, ASTM, USA, 2002.
[36] CNS 13754,「金屬及合金之腐蝕-大氣腐蝕性(汙染之測定)」,中國國家標準,民國85年。
[37] H.S. Carslaw, J.C. Jaeger, Conduction of heat in solids, The Clarendon Press (2). Oxford, 1959.
[38] P. Schiessl,W. Breit, “Local repair measures at concrete structures damaged by reinforcement corrosion. In: Page CL, Bamforth PB, Figg JW, editors. Corrosion of reinforcement in concrete construction. Cambridge”, UK: The Royal Society of Chemistry Publication, pp. 525–34, 1996.
[39] K. Kiattikomol, C. Jaturapitakkul, S. Songpiriyakij, S. Chutubtim, “A study of ground course fly ashes with different finenesses from various sources as a pozzolanic materials” , Cement Concrete Composite,Vol. 23, pp. 335–343,2001.
[40] C. Jaturapitakkul, K. Kiattikomol, V. Sata, T. Leekeeratikul, “Use of ground coarse fly ash as a replacement of condensed silica fume in producing high-strength concrete”, Cement Concrete Research, Vol. 34, pp. 549–555,2004.
[41] T.U. Mohammed, H. Hamada, “Relationship between free chloride and total chloride contents in concrete”, Cement Concrete Research, Vol. 33, pp. 1487–1490, 2003.
[42] R.K. Dhir, M.A.K. El-Mohr, T.D. Dyer, “Chloride binding in GGBS concrete”,
Cement Concrete Research, Vol. 26, pp. 1767–1773, 1996.
[43] O.M. Jensen, M.S.H. Korzen, H.J. Jakobsen, J. Skibsted,“ Influence of cement constitution and temperature on chloride binding in cement paste”, Advance Cement Research, Vol. 12, pp. 57–64, 2000.
[44] C. Arya, Y. Xu, “Effect of cement type on chloride binding and corrosion of steel in concrete”, Cement Concrete Research, Vol. 25, pp. 893–902, 1995.
[45] M. Castellote, C. Andrade, C. Alonso, “Chloride-binding isotherms in concrete submitted to non-steady-state migration experiments”, Cement Concrete Research, Vol. 29, pp. 1799–1806, 1999.
[46] H.U. Jensen, P.L. Pratt, “The binding of chloride ions by pozzolanic product in fly ash cement blends”, Advance Cement Research, Vol. 7 , pp. 121–129, 1989.
[47] R.K. Dhir, M.A.K. El-Mohr, T.D. Dyer, “Developing chloride resisting concrete using PFA”, Cement Concrete Research, Vol. 27, pp. 1633–1639, 1997.
[48] Ha-Won Song, Chang-Hong Lee, Ki Yong Ann,“Factors influencing chloride transport in concrete structures exposed to marine environments”,Cement & Concrete Composites ,Vol. 30 , pp.113–121, 2008.
[49] P. Schiessl, W. Breit, “Local repair measures at concrete structures damaged by reinforcement corrosion, C.L. Page, P.B. Bamforth, J.W. Figg (Eds.), Corrosion of Reinforcement in Concrete Construction, Cambridge”, pp. 525–534, UK ,1996.
[50] OE. Gjorv, O. Vennesland, “Diffusion of chloride ions from seawater into concrete. ” , Cement Concrete Research, Vol. 9,pp. 229–38, 1979.
[51] GK. Glass, NR. Buenfeld, “The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete”, Corrosion Science , Vol. 42,No. 2, pp. 329-344, 2000.
[52] K. Uji, Y. Matsuoka, T. Maruya,“ Formation of an equation for surface chloride content of concrete due to permeation of chloride” C.L. Page, K.W.J. Treadaway, P.B. Bamforth (Eds.), Corrosion of reinforcement in concrete, Elsevier Applied Science, pp. 258–267, London, UK ,1990.
[53] S. Morinaga, “Life prediction of reinforced concrete structures in hot and salt-laden environments.” In: Walker MJ, editor. Concrete in hot climates, E&FN SPON., pp. 155–64, 1992.
[54] M.A. Mustafa, K.M. Yusof, “Atmospheric chloride penetration into concrete in semitropical marine environment”, Cement Concrete Res, Vol. 24, pp. 661–670, 1994Standard Specification for Durability of Concrete. Japan Society of Civil Engineers, pp. 11–3, 1999.
[55] G.R. Meira, C. Andrade, C. Alonso, I.J. Padaratz, J.C. Borba, “Modelling sea-salt transport and deposition in marine atmosphere zone – A tool for corrosion studies” , Corrosion Science, Volume 50, Issue 9, pp. 2724-2731, September, 2008.
[56] G.R. Meira, M.C. Andrade, I.J. Padaratz, M.C. Alonso, J.C. Borba Jr., “Measurements and modelling of marine salt transportation and deposition in a tropical region in Brazil ”, Atmospheric Environment, Volume 40, Issue 29, pp. 5596-5607, September, 2006.
[57] G.R. Meira, C. Andrade, I.J. Padaratz, C. Alonso, J.C. Borba Jr., “Chloride penetration into concrete structures in the marine atmosphere zone - Relationship between deposition of chlorides on the wet candle and chlorides accumulated into concrete”, Cement and Concrete Composites Volume 29, Issue 9, pp. 667–676, October, 2007.
[58] G.R. Meira, C. Andrade, C. Alonso, I.J. Padaratz ,J.C. Borba Jr, “Salinity of marine aerosols in a Brazilian coastal area—Influence of wind regime”, Atmospheric Environment, Volume 41, Issue 38, pp. 8431–8441, December, 2007.
[59] Ye Jianxiong ,“Effect of mineral and water/binder ratios on the resustance to the chloride ions penetration into concrete”, Applied Mechanics and Materials , Vols. 99-100, pp. 758-761, 2011.
[60] K. Hong, R.D. Hooton, “Effects of cyclic chloride exposure on penetration of concrete cover ”, Cement and Concrete Research, Volume 29, Issue 9, pp.1379-1386, September, 1999.
[61] Feliu et al., S. Feliu, M. Morcillo, B. Chico, “Effect of distance from sea on atmospheric corrosion rate”, Corrosion-NACE, Vol. 55, pp. 883–89, 1999.
[62] R.K. Dhir, M.R. Jones , “Development of chloride-resisting concrete using fly ash”, Fuel ,Volume 78, Issue 2, pp. 137–142, January , 1999.
[63] T. Cheewaket, C. Jaturapitakkul, W. Chalee ,“Long term performance of chloride binding capacity in fly ash concrete in a marine environment ”,Construction and Building Materials, Volume 24, Issue 8, pp. 1352-1357, August, 2010.
[64] A. Delagrave, J. Marchand, O. Jean-Pierre, S. Julien, K. Hazrati, “Chloride binding capacity of various hydrated cement paste systems”, Adv Cem Based Mater, Vol. 6, pp. 28–35 ,1997.
[65] T. Sumranwanich, S. Tangtermsirikul,“ A model for predicting time-dependent chloride binding capacity of cement-fly ash cementitious system”, Mater Structrue, Vol. 37, pp. 387–396, 2004.
[66] RK. Dhir, MJ. McCarthy, “In: Proceedings of the 21st Conference on Our World in Concrete and Structures”, pp. 15–26. , Singapore, 1996.
[67] R.K. Dhir, M.R. Jones, M.J. McCarthy, Cement and Concrete Research, Vol. 26, No. 12, pp. 1761–1766,1996.
[68] R.K. Dhir, M.R. Jones, M.J. McCarthy, Magazine of Concrete Research, Vol. 46,No. 169, pp. 269–278,1994.
[69] R.K. Dhir, M.R. Jones, A.G.M. Seneviratne, Cement and Concrete Research, Vol. 21,No. 6, pp. 1092–1102,1991.
[70] MR. Jones, M.J. McCarthy, Dhir RK. In: Dhir RK, Jones MR, editors. Concrete 2000, vol. 2. London: E&FN Spon., pp. 1427–1444, 1993.
[71] RK. Dhir In: Cement replacement materials, Vol. 3. London: Surrey University Press, 1989.
[72] R.K. Dhir, M.J. McCarthy, B.J. Magee, Building and Construction Materials, Vol.10, No.1, pp. 59–74, 1998.
[73] W. Chalee, C. Jaturapitakkul , P. Chindaprasirt, “Predicting the chloride penetration of fly ash concrete in seawater” ,Marine Structures,Vol. 22, 341–353,2009.
[74] Michael D.A. Thomas, Phil B. Bamforth ,“ Modelling chloride diffusion in concrete: Effect of fly ash and slag”, Cement and Concrete Research, Volume 29, Issue 4, pp. 487-495, April 1999.
[75] J. Bai, S. Wild, B.B. Sabir,“ Chloride ingress and strength loss in concrete with different PC–PFA–MK binder compositions exposed to synthetic seawater”, Cement and Concrete Research, Volume 33, Issue 3, pp. 353-362, March ,2003.
[76] R.D. Hooton , E. Bentz , and T. Kojundic,“Long-term chloride penetration resistance of slica fume concrete based on field exposure”,Srevice Life Design for Infrastructure 2nd International Sumposium,Delt University of Technology, October4-6, 2010
[77] R.D. Hooton, E. Bentz, and T. Kojundic, “Long-Term Chloride Penetration Resistance of Bridge Decks Made With Silica Fume Concretes”, http://www.silicafume.org/pdf/reprints-longterm-resistance-concrete.pdf
[78] 陳育聖,「北台灣沿海地區氯鹽環境與混凝土耐久性質之研究」,博士論文,國立台灣大學土木工程研究所,民國100年6月。
[79] Supakit SWATEKITITHAM and Hajime OKAMURA, “Low Chloride Distribution in Concrete Structure near Seashore”, Dooku Gakkai Ronbunshuu E, Vol.62, No.1, pp.221-229, 2006.
[80] GR. Meira, “Chloride aggressiveness in marine atmosphere zone connected with corrosion problems in reinforced concrete structures”. PhD thesis. Florianopolis: Federal University of Santa Catarina, 2004.
[81] H.G. Migdley, J.M. Yllston, “The penetration of chlorides into hardened cement pastes, Cement Concrete Research, Vol. 14, pp. 546–558, 1984.
[82] J. Arsenault, J.P. Bigas, J.P. Ollivier, “Determination of chloride diffusion coefficient using two different steady-state methods: influence of concentration gradient”, L.O. Nilsson, J.P. Ollivier (Eds.), Proceedings of the international RILEM workshop – chloride penetration into concrete, RILEM, St-Remy-les-Chevreuse, pp. 150–160, 1997.
[83] S. Chatterji, Transportation of ions through cement based materials. Part 1 – Fundamental equations and basic measurement techniques”, Cement Concrete Research, Vol. 24, No. 5, pp. 907–912, 1994.
[84] L. Tang, “Concentration dependence of diffusion and migration of chloride ions. Part 1. Theoretical considerations”, Cement Concrete Research,Vol. 29, pp. 1463–1468, 1999.
[85] Albert K.H. Kwan and Henry H.C. Wong, “Durability of Reinforced Concrete Structures”, Theory vs Practice , Department of Civil Engineering, The University of Hong Kong, Hong Kong.
[86] Supakit Swatekititham, “Computational Model for Chloride Concentration at Surface of Concrete under Actual Environmental Condition”, PHD, Infrastructure Systems Engineering Course, Kochi University of Technology Kochi, Japan, March, 2004.
[87] Rob B. Polder, Willy H.A. Peelen, “Characterization of chloride transport and reinforcement corrosion in concrete under cyclic wetting and dry by electrical resistivity”, Cement & Concrete Composites, Nol. 24, pp.427-435, 2002.
[88] Seung-Woo Pack,Min-Sun Jung,HA-Won Song,Sang-Hyo Kim,Ki Young Ann,“Prediction of time dependent chloride transport in concrete structure exposed to a marine environment”,Cement and Concrete Research,Vol. 40,pp.302-312,2010.
[89] 李昀璁,「環境條件對混凝土構造物表面氯離子行為研究」,碩士論文,國立台灣大學土木工程研究所,民國101年7月。
[90] 林德威,「乾溼循環下不同水膠比及爐石含量混凝土之氯離子滲透行為」,碩士論文,國立台灣大學土木工程研究所,民國99年6月。
[91] 楊仲家,「混凝土耐久性試驗研究—氯離子滲入深度之探討」”內政部建築研究所,民國93年。
[92] R. Bleszynski, R. D. Hooton, M. D. A. Thomas, C. A. Rogers, “Durability of Ternary Blend Concrete with Silica Fume and Blast-Furnace Slag:Laboratory and Outdoor Exposure Site Studies”, ACI Materials Journal, Vol. 99, NO. 51, September-October, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60969-
dc.description.abstract台灣沿海地區高溫、潮濕,沿海橋梁受到環境影響,橋梁容易受到大氣中氯鹽離子影響。橋梁長期受到環境影響,形成裂縫氯離子藉由裂縫進入混凝土入中。氯離子滲入鋼筋混凝土結構中劣化原因。當鋼筋表面達氯離子臨界濃度時,鋼筋混凝土中鋼筋腐蝕混凝土產生裂縫,造成鋼筋握裹力下降,進而降低結構物撓曲強度。
文獻中現地曝放試驗試體多曝放於水下或潮汐間帶,混凝土試體較少曝放於沿海區域的大氣環境中。因此本研究採用飛來鹽份採集器收集大氣中氯鹽量。探討大氣中氯鹽量與混凝土中表面氯離子關係。
本研究希望藉由現地曝放試驗與鹽霧加速試驗,得知鹽霧加速試驗表面氯離子濃度表現與現地曝放試驗表面氯離子濃度表現。現地曝放試驗試體曝放立面角度不同,有0°、45°、90°、135°與180°。現地曝放試驗包含氣象因子資料,尋求表面氯離子濃度與氣象因子關係。
zh_TW
dc.description.abstractThe weather is hot and humid in coastal region of Taiwan. Costal bridges affected by environment, bridges are susceptible to atmospheric influence of chloride ions. Bridges has been an environmental impact for a long time, the chloride ions penetration into the concrete of cracks. Whenever the threshold amount of chloride at the surface of reinforcement is reached, reinforcement corrosion and concrete cracking may occur resulting in decreasing the bond strength between concrete and reinforcement,and subsequently reducing the flexural or shear strength of the structure.
Situ exposures most discuss test specimen placeing in water or exposed to tidal zone, less exposed concrete specimen in the coastal zone atmosphere in literature. Therefore, this study uses spray salt collectors collect chloride from marine aerosol. The relationship between chloride from marine aerosol and surface chloride of concrete is discussed in this paper.
The paper hopes to find the relationship between field test and salt spray test. Release the relationship between surface chloride of field test and surface chloride of spray salt test. Field exposure test discuss test side of speciments exposed to different angle, there are 0 °, 45 °, 90 °, 135 ° and 180 °. The field test comprised environmental characterisation. Find the relationship between environmental characterization and surface chloride.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:39:03Z (GMT). No. of bitstreams: 1
ntu-102-R00521215-1.pdf: 6393088 bytes, checksum: 044c9256e214c798debf965ad8a3c113 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 viii
圖目錄 x
照片目錄 xvi
Chapter 1 第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與內容 1
1.3 研究流程 1
Chapter 2 第二章 文獻回顧 3
2.1 氯離子在混凝土中的傳輸行為 3
2.1.1 氯離子來源和存在型態 3
2.1.2 氯離子傳輸途徑 4
2.1.3 擴散係數 7
2.1.4 養護條件對擴散係數影響 9
2.2 混凝土中影響氯離子滲透行為的因素 10
2.2.1 卜作嵐材料 10
2.2.2 混凝土孔隙 10
2.2.3 水灰比 11
2.2.4 水泥用量 11
2.3 卜作嵐材料對混凝土中氯離子之影響 12
2.3.1 飛灰對混凝土中氯離子的影響 12
2.3.2 爐石對混凝土中氯離子的影響 16
2.3.3 爐灰混凝土中氯離子的影響 17
2.4 大氣中氯鹽量試驗方法 18
2.4.1 濕燭法 18
2.4.2 飛來鹽採集器方法 18
2.5 擴散係數和表面氯離子關係 19
2.6 養護條件和表面氯離子關係 21
2.7 曝放條件和表面氯離子關係 21
2.8 氣象因子對表面氯離子濃度影響 22
2.8.1 雨量對大氣氯鹽量影響 22
2.8.2 風速對大氣氯鹽量的影響 23
2.9 混凝土氯離子耐久性試驗與現地曝放試驗 24
2.9.1 鹽霧加速試驗 24
2.9.2 現地曝放試驗 26
Chapter 3 第三章 實驗計畫 66
3.1 實驗內容與架構 66
3.2 大氣中氯鹽量分佈試驗 66
3.2.1 大氣中氯鹽採集器試驗規劃點 66
3.2.2 氯鹽採集器製作和安裝 66
3.2.3 大氣中氯鹽採集方法 67
3.2.4 氣象資料蒐集與分析 68
3.3 混凝土試體現地曝放試驗 68
3.3.1 試體材料與參數 68
3.3.2 實驗儀器 69
3.3.3 現地曝放場地規劃 70
3.3.4 試體設計與建置 70
3.3.5 試體取樣方法 71
3.3.6 試體表面氯離子濃度試驗 71
3.4 混凝土試體鹽霧加速試驗 72
3.4.1 試體材料與參數 72
3.4.2 試體設計與建置 72
3.4.3 試體取樣方法 72
3.4.4 試體表面氯離子濃度試驗 72
Chapter 4 第四章 試驗結果與討論 87
4.1 鹽霧室氯離子濃度 87
4.2 抗壓強度 87
4.2.1 水膠比 87
4.2.2 飛灰添加量抗壓強度表現 88
4.2.3 爐石添加量抗壓強度表現 89
4.3 現地曝放試驗結果 90
4.3.1 現地大氣中氯鹽量試驗結果與分析 90
4.3.2 現地大氣中附著氯鹽量試驗結果與分析 91
4.3.3 現地氣象資料蒐集 91
4.4 現地曝放試體表面氯離子濃度 93
4.5 鹽霧室加速試驗表面氯離子濃度 94
4.5.1 水灰比對表面氯離子關係 94
4.5.2 循環次數與表面氯離子關係 95
4.5.3 飛灰取代率與表面氯離子濃度 96
4.5.4 爐石取代率與表面氯離子濃度 97
4.5.5 爐灰添加量對表面氯離子濃度影響 97
4.5.6 綜合比較 97
Chapter 5 第五章 結論與建議 147
5.1 結論 147
5.2 建議 148
REFERENCE 149
dc.language.isozh-TW
dc.subject表面氯離子zh_TW
dc.subject鹽霧加速試驗zh_TW
dc.subject現地曝放試驗zh_TW
dc.subject曝放角度zh_TW
dc.subjectSurface Chlorideen
dc.subjectfield exposure testen
dc.subjectsalt spray testen
dc.subjectexposure angleen
dc.title環境條件對混凝土結構物表面氯離子濃度入滲行為之研究zh_TW
dc.titleBehavior of Surface Chloride Iron Diffusion into Concrete under Different Environmental Conditionsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉禎業,楊仲家,廖文正
dc.subject.keyword表面氯離子,現地曝放試驗,鹽霧加速試驗,曝放角度,zh_TW
dc.subject.keywordSurface Chloride,field exposure test,salt spray test,exposure angle,en
dc.relation.page159
dc.rights.note有償授權
dc.date.accepted2013-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
6.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved