請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60955完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅仁權(Ren. C Luo) | |
| dc.contributor.author | Keng-Cheng Yeh | en |
| dc.contributor.author | 葉耕成 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:38:18Z | - |
| dc.date.available | 2014-08-20 | |
| dc.date.copyright | 2013-08-20 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-13 | |
| dc.identifier.citation | [1] M. Lourenc, V. Pedro, and J. P. Barreto, 'Localization in indoor environments by querying omnidirectional visual maps using perspective images,' in Robotics and Automation (ICRA), 2012 IEEE International Conference on, pp. 2189-2195, 2012.
[2] B. Balaguer, G. Erinc, and S. Carpin, 'Combining classification and regression for WiFi localization of heterogeneous robot teams in unknown environments,' in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 3496-3503, 2012. [3] A. Aldoma, F. Tombari, L. Di Stefano, and M. Vincze, 'A global hypotheses verification method for 3d object recognition,' in Computer Vision–ECCV 2012, ed: Springer, pp. 511-524, 2012. [4] A. Aldoma, Z.-C. Marton, F. Tombari, W. Wohlkinger, C. Potthast, B. Zeisl, et al., 'Tutorial: Point Cloud Library: Three-Dimensional Object Recognition and 6 DOF Pose Estimation,' Robotics & Automation Magazine, IEEE, vol. 19, pp. 80-91, 2012. [5] M. Lutz, S. Hochdorfer, and C. Schlegel, 'Global localization using multiple hypothesis tracking: A real-world approach,' in Technologies for Practical Robot Applications (TePRA), 2011 IEEE Conference on, pp. 127-132, 2011. [6] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, 'Fast 3d recognition and pose using the viewpoint feature histogram,' in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pp. 2155-2162, 2010. [7] D. Rubin, “A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: The SIR algorithm,” Journal of the American Statistical Association, vol. 82, no. 398, pp. 543–546, 1987. [8] X. Jianping, F. Nashashibi, M. Parent, and O. G. Favrot, 'A real-time robust global localization for autonomous mobile robots in large environments,' in Control Automation Robotics & Vision (ICARCV), 2010 11th International Conference on, pp. 1397-1402, 2010. [9] N. Gordon, D. Salmond, and A. Smith, “Novel approach to onlinear/non-Gaussian Bayesian state estimation,” Radar and Signal Processing, IEEE Proceedings on, vol. 140, no. 2, pp. 107–113, 1993. [10] H. Wei, Z. Changjiu, and T. Yantao, 'Robust Monte Carlo Localization for humanoid soccer robot,' in Advanced Intelligent Mechatronics, 2009. AIM 2009. IEEE/ASME International Conference on, pp. 934-939, 2009. [11] A. Murarka and B. Kuipers, 'A stereo vision based mapping algorithm for detecting inclines, drop-offs, and obstacles for safe local navigation,' in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pp. 1646-1653, 2009. [12] M. Muja and D. G. Lowe, 'Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration,' in VISAPP (1), pp. 331-340, 2009. [13] Z. Lei, R. Zapata, and P. Lepinay, 'Self-adaptive Monte Carlo localization for mobile robots using range sensors,' in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pp. 1541-1546, 2009. [14] V. Trung-Dung, J. Burlet, and O. Aycard, 'Grid-based localization and online mapping with moving objects detection and tracking: new results,' in Intelligent Vehicles Symposium, 2008 IEEE, pp. 684-689, 2008. [15] C. Guanghui, N. Matsuhira, J. Hirokawa, H. Ogawa, and I. Hagiwara, 'Mobile robot global localization using particle filters,' in Control, Automation and Systems, 2008. ICCAS 2008. International Conference on, pp. 710-713, 2008. [16] J. L. Blanco, J. Gonzalez, and J. A. Fernandez-Madrigal, 'An optimal filtering algorithm for non-parametric observation models in robot localization,' in Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pp. 461-466, 2008. [17] J.-L. Blanco, 'Derivation and implementation of a full 6D EKF-based solution to bearing-range SLAM,' University of Malaga, Spain, Technical Report, 2008. [18] D. Fox, “Adapting the Sample Size in Particle Filters Through KLDSampling.” International Journal of Robotics Research, vol. 22, no. 12, pp. 985–1003, 2003. [19] P. E. Hart, N. J. Nilsson, and B. Raphael, 'A formal basis for the heuristic determination of minimum cost paths,' Systems Science and Cybernetics, IEEE Transactions on, vol. 4, pp. 100-107, 1968. [20] G. Grisetti, C. Stachniss, and W. Burgard, 'Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters,' Robotics, IEEE Transactions on, vol. 23, pp. 34-46, 2007. [21] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, 'Rotation Forest: A New Classifier Ensemble Method,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 28, pp. 1619-1630, 2006. [22] S. T. Pfister and J. W. Burdick, 'Multi-scale point and line range data algorithms for mapping and localization,' in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pp. 1159-1166, 2006. [23] J. L. Blanco, J. Gonzalez, and J. A. Fernandez-Madrigal, 'The Trajectory Parameter Space (TP-Space): A New Space Representation for Non-Holonomic Mobile Robot Reactive Navigation,' in Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pp. 1195-1200, 2006. [24] A. Doucet, N. De Freitas, K. Murphy, and S. Russell, 'Rao-Blackwellised particle filtering for dynamic Bayesian networks,' in Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, pp. 176-18, 2000 [25] C. Premebida and U. Nunes, 'Segmentation and geometric primitives extraction from 2d laser range data for mobile robot applications,' Robotica, pp. 17-25, 2005. [26] G. Grisetti, C. Stachniss, and W. Burgard, 'Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling,' in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pp. 2432-2437, 2005. [27] J. Minguez and L. Montano, 'Nearness diagram (ND) navigation: collision avoidance in troublesome scenarios,' Robotics and Automation, IEEE Transactions on, vol. 20, pp. 45-59, 2004. [28] S. Koenig and M. Likhachev, 'Fast replanning for navigation in unknown terrain,' Robotics, IEEE Transactions on, vol. 21, pp. 354-363, 2005. [29] D. Hahnel, R. Triebel, W. Burgard, and S. Thrun, 'Map building with mobile robots in dynamic environments,' in Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, pp. 1557-1563 vol.2, 2003. [30] A. Eliazar and R. Parr, 'DP-SLAM: Fast, robust simultaneous localization and mapping without predetermined landmarks,' in IJCAI, pp. 1135-1142, 2003. [31] D. Fox, W. Burgard, and S. Thrun, 'The dynamic window approach to collision avoidance,' Robotics & Automation Magazine, IEEE, vol. 4, pp. 23-33, 1997. [32] K. O. Arras, J. A. Castellanos, and R. Siegwart, 'Feature-based multi-hypothesis localization and tracking for mobile robots using geometric constraints,' in Robotics and Automation, 2002. Proceedings. ICRA '02. IEEE International Conference on, pp. 1371-1377 vol.2, 2002. [33] J. Borenstein and Y. Koren, 'The vector field histogram-fast obstacle avoidance for mobile robots,' Robotics and Automation, IEEE Transactions on, vol. 7, pp. 278-288, 1991. [34] I. Ulrich and I. Nourbakhsh, 'Appearance-based place recognition for topological localization,' in Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE International Conference on, pp. 1023-1029 vol.2, 2000. [35] M. Khatib, H. Jaouni, R. Chatila, and J.-P. Laumond, 'Dynamic path modification for car-like nonholonomic mobile robots,' in Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on, pp. 2920-2925, 1997. [36] V. J. Lumelsky and T. Skewis, 'Incorporating range sensing in the robot navigation function,' Systems, Man and Cybernetics, IEEE Transactions on, vol. 20, pp. 1058-1069, 1990. [37] A. Kelly, 'Fast and easy systematic and stochastic odometry calibration,' in Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, pp. 3188-3194 vol.4, 2004. [38] S. Rusinkiewicz and M. Levoy, 'Efficient variants of the ICP algorithm,' in 3-D Digital Imaging and Modeling, 2001. Proceedings. Third International Conference on, pp. 145-152, 2001. [39] D. M. Bradley, 'Odometry: Calibration and Error Modeling,' ed: Citeseer. [40] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press, September 2005. [41] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robotos: The MIT press, 2004. [42] http://www.mrpt.org/Downloads | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60955 | - |
| dc.description.abstract | 在人機互動研究領域中,機器人被綁架問題及自動回復並到達目標是一個非常有趣且重要的研究議題。有別於工業用機器人,在行進中所工作環境通常是靜態的或是可被預測的。服務型機器人的工作環境就是我們的生活環境,在這個環境中存在著許多不確定性是機器人必須要克服的。機器人綁架問題就是眾多不確定性中其中一項。具體來說,因為機器人就在我們生活周遭,有的時候會我們會搬動機器人到其他地方為我們工作,清潔機器人就是最好的例子。當我們搬動機器人到其他地方的時候,對機器人是相當困擾的,因為它完全不知道發生什麼事,以及如何應對。
這篇論文主旨在於解決機器人綁架問題。我們提供一個演算法讓機器人知道其被綁架了,進而了解被綁架到何方使用一些機器人定位的方法。本論文所使用之主要的感測器為雷射測距儀。到目前為止蒙地卡羅定位法(Monte Carlo Localization),為一個廣泛被使用的機器人定位方法,然而蒙地卡羅定位法在全域定位(Global Localization)的計算量非常龐大,耗時也相當長。一般而言全域定位功能在機器人綁架問題中扮演重要腳色。我們在這篇論文提出一個方法提升全域定位的計算效率同時降低計算時間。此方法結合了傳統蒙地卡羅定位法和現代機器學習方法 Fast Library for Approximated Nearest Neighbors (FLANN). 由於FLANN 需要定義描述子(descriptor),我們在這篇論文也定義了一個新的基於雷射測距儀的資料格式描述子。我們將此描述子命名為Geometric Structure Feature Histogram (GSFH)。透過結合現代機器學習法FLANN與傳統蒙地卡羅定位法,我們大大降低了蒙地卡羅的計算負擔,並與提高計算效率。讓機器人綁架問題得以解決。實驗結果以及模擬結果都顯示了我們的方法的有效解決機器人綁架及自動回復到達原目標問題。 | zh_TW |
| dc.description.abstract | The Kidnapped Robot Problem is one of the essential and interesting issues in Human Robot Interaction research fields. Unlike industrial robot works in factory which is mostly in a static and predictable environment. Service robot works in the environment together with us, and there are many unpredictable factors the robot should overcome. Kidnapped Robot Problem is one of the unpredictable cases. Since the robot works around us, sometimes we may take up the robot to the other place in order to help us to deal a desirable task, for example cleaning robot. However, these actions may cause big problems because the robot does not have any idea what has happened.
This thesis addresses the problem of the position and orientation (pose) recovery after the robot being kidnapped, based on Laser Range Finder (LRF) sensor. By now the Monte Carlo Localization (MCL) has been introduced as a useful localization method. However the computational load of MCL is extremely large and not efficient at the initial few steps (global localization), which causes the localization process to take long computation time after the robot has been kidnapped and resets the particles. This paper provides a methodology to solve it by fusing MCL with Fast Library for Approximate Nearest Neighbors (FLANN) machine learning technique. We design a feature for LRF data called Geometric Structure Feature Histogram (GSFH).The feature GSFH encodes the LRF data to use it as the descriptor in FLANN. By building the database previously and FLANN searching technique, we filter out the most impossible area and reduce the computation load of MCL. Both in simulation and real autonomous mobile robot experiments show the effectiveness of our method. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:38:18Z (GMT). No. of bitstreams: 1 ntu-102-R00921013-1.pdf: 8313179 bytes, checksum: ac8e4cb1871f82d755a35a187a2a290b (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT III TABLE OF CONTENTS IV LIST OF FIGURES VI LIST OF TABLES IX CHAPTER 1 INTRODUCTION 0 1.1 KIDNAPPED ROBOT PROBLEM DEFINITION 0 1.2 SYSTEM STRUCTURE 1 1.2.1 Simultaneous Localization and Mapping (SLAM) 2 1.2.2 Navigation 3 1.2.3 Localization 4 1.3 ORGANIZATION 6 CHAPTER 2 MOBILE ROBOT KINEMATIC MODEL 7 2.1 MOBILE ROBOT POSITION REPRESENTATION 8 2.2 VELOCITY MOTION MODEL 10 CHAPTER 3 SENSOR MEASUREMENT MODEL 13 3.1 MEASUREMENT TRANSFORMATION 14 3.2 LIKELIHOOD FIELD MEASUREMENT MODEL 14 CHAPTER 4 MONTE CARLO LOCALIZATION 20 4.1 A SIMPLE MCL EXAMPLE 21 4.2 THE MCL ALGORITHM 23 4.3 KLD-SAMPLING 25 4.4 MCL VERSUS MCL WITH KLD-SAMPLING 29 CHAPTER 5 RAO-BLACKWELLIZED PARTICLE FILTER SLAM 35 5.1 THE DEFINITION OF SLAM 37 5.2 MONTE CARLO BASED SLAM 38 5.3 ROA-BLACKWELLIZED PARTICLE FILTER SLAM 39 CHAPTER 6 NAVIGATION WITH COLLISION AVOIDANCE 50 6.1 MARKOV DECISION PROCESS 52 6.2 VALUE ITERATION 53 6.3 NEAREST DIAGRAM 59 6.4 COMBINATION OF VALUE ITERATION NAVIGATION AND ND NAVIGATION 68 CHAPTER 7 RESUME NAVIGATION AND RE-LOCALIZATION OF AN AUTONOMOUS MOBILE ROBOT AFTER BEING KIDNAPPED 71 7.1 GEOMETRIC STRUCTURE FEATURE HISTOGRAM 73 7.1.1 Segmentation 74 7.1.2 Line Fitting 75 7.1.3 Geometric Structure Feature Histogram (GSFH) 76 7.2 LOCALIZATION BY COMBINING MCL AND FLANN 77 7.2.1 Database building 78 7.2.2 Fast Library for Approximate Nearest Neighbor (FLANN)Searching 79 7.2.3 MCL with Optimal Sampling 79 7.3 KIDNAPPED ROBOT RE-LOCALIZATION SYSTEM STRUCTURE 80 CHAPTER 8 EXPERIMENTAL RESULTS 83 8.1 SIMULATION 83 8.2 KIDNAPPING RECOVERY EXPERIMENT 87 CHAPTER 9 CONCLUSIONS AND CONTRIBUTIONS 95 9.1 CONCLUSIONS 95 9.2 CONTRIBUTION 96 CHAPTER 10 FUTURE WORKS 97 REFERENCES 98 VITA 102 | |
| dc.language.iso | en | |
| dc.subject | 機器人綁架問題 | zh_TW |
| dc.subject | 蒙地卡羅定位法 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 導航 | zh_TW |
| dc.subject | 同時定位與建圖 | zh_TW |
| dc.subject | Navigation | en |
| dc.subject | Monte Carlo Localization | en |
| dc.subject | Machine Leaning | en |
| dc.subject | SLAM. | en |
| dc.subject | Kidnapped Robot | en |
| dc.title | 全自動機器人具同時定位與建圖及綁架回復機制之研究 | zh_TW |
| dc.title | Simultaneous Localization and Mapping of an Autonomous Mobile Robot with Kidnap and Automatic Recovery Capabilities | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇國嵐(Kao. L Su),黃國勝(Kao-Shing Hwang) | |
| dc.subject.keyword | 機器人綁架問題,蒙地卡羅定位法,機器學習,導航,同時定位與建圖, | zh_TW |
| dc.subject.keyword | Kidnapped Robot,Monte Carlo Localization,Machine Leaning,Navigation,SLAM., | en |
| dc.relation.page | 102 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 8.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
