請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60945
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 傅立成 | |
dc.contributor.author | Cheng-En Wu | en |
dc.contributor.author | 吳承恩 | zh_TW |
dc.date.accessioned | 2021-06-16T10:37:45Z | - |
dc.date.available | 2018-08-26 | |
dc.date.copyright | 2013-08-26 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-13 | |
dc.identifier.citation | [1] 台灣駕駛人口成長圖. Available: http://www.npa.gov.tw/NPAGip/wSite/ct?xItem=63896&ctNode=12598&mp=1
[2] 道路事故車種別. Available: http://www.npa.gov.tw/NPAGip/wSite/ct?xItem=26918&ctNode=12595&mp=1 [3] N. Dalal and B. Triggs, 'Histograms of oriented gradients for human detection,' IEEE Conf. on Computer Vision and Pattern Recognition pp. 886-893, 2005. [4] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, 'Fast human detection using a cascade of histograms of oriented gradients,' IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1491-1498, 2006. [5] S. Maji, A. C. Berg, and J. Malik, 'Classification using intersection kernel support vector machines is efficient,' IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1-8, 2008. [6] O. Tuzel, F. Porikli, and P. Meer, 'Human detection via classification on riemannian manifolds,' IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1-8, 2007. [7] M. Wang, W. Li, and X. Wang, 'Transferring a generic pedestrian detector towards specific scenes,' IEEE Conf. on Computer Vision and Pattern Recognition, pp. 3274-3281, 2012. [8] C. K. Heng, S. Yokomitsu, Y. Matsumoto, and H. Tamura, 'Shrink boost for selecting multi-LBP histogram features in object detection,' IEEE Conf. on Computer Vision and Pattern Recognition, pp. 3250-3257, 2012. [9] N. Dalal, B. Triggs, and C. Schmid, 'Human detection using oriented histograms of flow and appearance,' ECCV, pp. 428-441, 2006. [10] X. Wang, T. X. Han, and S. Yan, 'An HOG-LBP human detector with partial occlusion handling,' IEEE International Conference on Computer Vision, pp. 32-39, 2009. [11] C. Huang and R. Nevatia, 'High performance object detection by collaborative learning of joint ranking of granules features,' IEEE Conf. on Computer Vision and Pattern Recognition, pp. 41-48, 2010. [12] Y.-F. Kao, Y.-M. Chan, L.-C. Fu, P.-Y. Hsiao, S.-S. Huang, C.-E. Wu, and M.-F. Luo, 'Comparison of granules features for pedestrian detection,' IEEE Conf. on Intelligent Transportation Systems (ITSC), pp. 1777-1782, 2012. [13] W. R. Schwartz, A. Kembhavi, D. Harwood, and L. S. Davis, 'Human detection using partial least squares analysis,' IEEE International Conference on Computer Vision, pp. 24-31, 2009. [14] T. Watanabe, S. Ito, and K. Yokoi, 'Co-occurrence histograms of oriented gradients for pedestrian detection,' Advances in Image and Video Technology, pp. 37-47, 2009. [15] Y. Zheng, C. Shen, R. Hartley, and X. Huang, 'Pyramid center-symmetric local binary/trinary patterns for effective pedestrian detection,' ACCV, pp. 281-292, 2011. [16] S. Walk, N. Majer, K. Schindler, and B. Schiele, 'New features and insights for pedestrian detection,' IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1030-1037, 2010. [17] P. Dollar, S. Belongie, and P. Perona, 'The fastest pedestrian detector in the west,' BMVC, 2010. [18] F. S. Khan, R. M. Anwer, J. van de Weijer, A. D. Bagdanov, M. Vanrell, and A. M. Lopez, 'Color attributes for object detection,' IEEE Conf. on Computer Vision and Pattern Recognition, pp. 3306-3313, 2012. [19] G. Duan, H. Ai, and S. Lao, 'A structural filter approach to human detection,' ECCV, pp. 238-251, 2010. [20] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, 'Object detection with discriminatively trained part-based models,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, pp. 1627-1645, 2010. [21] A. Mogelmose, A. Prioletti, M. M. Trivedi, A. Broggi, and T. B. Moeslund, 'Two-stage part-based pedestrian detection,' IEEE Conf. on Intelligent Transportation Systems, pp. 73-77, 2012. [22] W. Ouyang and X. Wang, 'A discriminative deep model for pedestrian detection with occlusion handling,' IEEE Conf. on Computer Vision and Pattern Recognition, pp. 3258-3265, 2012. [23] C. Hyunggi, P. E. Rybski, and Z. Wende, 'Vision-based bicycle detection and tracking using a deformable part model and an EKF algorithm,' Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on, pp. 1875-1880, 2010. [24] J. Heewook, T. Joo Kooi, S. Ishikawa, and T. Morie, 'Applying HOG feature to the detection and tracking of a human on a bicycle,' Control, Automation and Systems (ICCAS), 2011 11th International Conference on, pp. 1740-1743, 2011. [25] V. N. Vapnik, The nature of statistical learning theory: Springer-Verlag New York, Inc., 1995. [26] C. Cortes and V. Vapnik, 'Support-vector networks,' Machine learning, vol. 20, pp. 273-297, 1995. [27] H. Yuen, J. Princen, J. Illingworth, and J. Kittler, 'Comparative study of Hough transform methods for circle finding,' Image and Vision Computing, vol. 8, pp. 71-77, 1990. [28] C.-E. Wu, Y.-M. Chan, L.-C. Fu, P.-Y. Hsiao, S.-S. Huang, M.-F. Luo, H.-H. Chen, and P.-T. Huang, 'Combining Multiple Complementary Features for Pedestrian and Motorbike Detection,' IEEE Conf. on Intelligent Transportation Systems (ITSC), 2013 [29] B. Alexe, T. Deselaers, and V. Ferrari, 'What is an object?,' IEEE Conf. on Computer Vision and Pattern Recognition, pp. 73-80, 2010. [30] G. J. Burghouts and J.-M. Geusebroek, 'Performance evaluation of local colour invariants,' Comput. Vis. Image Underst., vol. 113, pp. 48-62, 2009. [31] G. Gualdi, A. Prati, and R. Cucchiara, 'Multistage Particle Windows for Fast and Accurate Object Detection,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, pp. 1589-1604, 2012. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60945 | - |
dc.description.abstract | 在智慧型車輛系統上,障礙物偵測一直是重要的議題,本篇研究認為除了一般行人之外,路面上騎著機踏車的人也需要偵測,因此將之納入考量。在過去的文獻當中,有許多與行人偵測的相關研究,這些研究大多採用梯度方向直方圖當成特徵,取得了不錯的成效,然而很少研究探討如何利用人與交通工具間的空間關係,且原先的行人偵測方面尚有一些改進空間。在改進一般的行人偵測方面,本篇論文提出了一個用物體本身紋理相似性的特徵,稱為Texture Self-similarity (TSS),用來補足一般特徵較少描述的物體對稱及顯著特性。TSS是基於先前提出的LOP特徵來計算物體本身各區塊之間的紋理相似程度。在人形偵測實驗中,可以明顯看出TSS特徵改善了偵測的準確率。本篇研究也提出了一個對於機踏車偵測的強健特徵,利用輪胎的外型資訊來當成特徵,有效的進一步去判斷偵測到的機踏車是否正確,幫助提升整體系統之效能。
在做到有效的人形偵測及機踏車之後,本篇論文提出了使用空間關係來有效結合兩者之結果,在路面上偵測到的機踏車大多有駕駛者,同樣的偵測到駕駛者的附近應該也要有機踏車,故其空間關係應十分顯著。觀察之後使用駕駛者與機踏車的質心間位移間大小比例來當成所用之空間關係,分析此空間關係的分佈發現可以其呈現高斯分佈,故本論文利用高斯分佈的機率公式來計算其機率,假設變數間獨立故機率直接相乘,最終結果再過濾掉可能性低的組合。此外本篇論文也藉著空間關係來修正原本偵測到的視窗,混合理想位置與實際偵測位置以得到更精確的位置,藉由以上空間關係的結合運用進而提升偵測的結果。 | zh_TW |
dc.description.abstract | Obstacle detection is an important area of intelligent transportation systems. We have to detect not only pedestrian but also on-road human with two-wheel vehicle. In the literature, there are a lot of work about pedestrian detection based on HOG feature and achieve good performance. However, there are few researches on how to use the spatial relationship and there is still room for pedestrian detection. To improve pedestrian detection, in this research we propose a new feature which is based on self-similarity, called Texture Self-Similarity (TSS). The main idea of TSS is to compute the similarity between blocks by comparing the histogram of texture information. The TSS also encode the symmetry and saliency of object, which is seldom be encoded. The experiments show that TSS feature is useful to improve the overall performance of system. We also design a strong feature for two-wheel vehicle detection. The feature is based on the shape of wheel to improve the accuracy of two-wheel vehicle detection.
After improving the performance of human detection and vehicle detection, this thesis propose using the spatial relationship to combine these results. On-road human and vehicles are almost always appearing simultaneously. As a result, there is strong spatial relationship among on-road human and two-wheel vehicle. According to observations, we model the relative ratio and the displacement between the centroids as three variables. We use three independent Gaussian distribution to compute the probability by these variables. Then the candidates with low probability will be filtered out. Besides, we mix the ideal bounding box and detection bounding box to get better results. With the help of spatial relationship, we improve the system’s performance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:37:45Z (GMT). No. of bitstreams: 1 ntu-102-R00944002-1.pdf: 5523785 bytes, checksum: 5ced919c6764969df3425a322f11242b (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES x Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Challenges 3 1.3 Related work 4 1.4 Contribution 7 1.5 Thesis organization 8 Chapter 2 Preliminaries 10 2.1 Support Vector Machine (SVM) 10 2.1.1 Objective of SVM 10 2.1.2 General Form of SVM 12 2.1.3 Soft Margin 14 2.2 Color Self-similarity (CSS) 15 2.2.1 CSS Descriptor 15 2.2.2 CSS Feature Encoding 16 2.3 Histogram of Oriented Gradient (HOG) 17 2.3.1 HOG Descriptor 18 2.3.2 HOG Feature Encoding 19 2.4 Circle Detection by Hough transform 20 Chapter 3 Texture Self-Similarity Descriptor for Specific Object Properties 21 3.1 Specific Object Properties 22 3.1.1 Continuous Boundary 22 3.1.2 Saliency 23 3.1.3 Symmetry 24 3.2 Texture Self-Similarity (TSS) 25 3.2.1 Overview of TSS 26 3.2.2 TSS Feature Encoding 27 3.3 Strong Feature of Two-wheel Vehicle 32 3.3.1 Observation of Two-wheel Vehicle 32 3.3.2 Strong Feature Descriptor Encoding 33 3.4 Classifier Learning 35 Chapter 4 On-road Human Detection in Image 36 4.1 Overview of Detection System 37 4.2 Multiple-class Generation 38 4.2.1 Candidate Generation 39 4.2.2 Classification of Candidate 41 4.2.3 Non-maximum suppression 42 4.3 The Spatial Relationship among Cyclist and Vehicle 44 4.3.1 Observation of Cyclist with Vehicle 44 4.3.2 Spatial Relationship Modeling 45 4.4 Spatial Relationship Model Imposing 48 4.4.1 Dynamic Threshold 48 4.4.2 Matching Probability Estimation 49 4.5 Refinement of Detection Results 49 4.5.1 Mixing Bounding box 50 4.5.2 Fusing the results of cyclist and pedestrian 50 Chapter 5 Experimental Results 51 5.1 Environment Setting 51 5.2 Training Databases 52 5.3 Experimental Results of Specific Object Properties 53 5.3.1 Performance on INRIA and Caltech Dataset 53 5.3.2 Performance on NTU Daytime On-road Human Dataset 57 5.3.3 False Positive of HOG-LOP-TSS 60 5.4 Experimental Results of Strong Vehicle Information 60 5.4.1 Performance of Strong Wheel Feature 61 5.4.2 Performance of Spatial Relationship 62 Chapter 6 Conclusion 65 REFERENCE 67 | |
dc.language.iso | zh-TW | |
dc.title | 利用載具提供之空間關係以改善路面人形偵測之效能 | zh_TW |
dc.title | Effective approach for on-road human detection incorporating strong vehicle information | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蕭培墉,黃世勳,傅楸善,方瓊瑤 | |
dc.subject.keyword | 行人偵測,類行人偵測,自相似特徵,空間關係, | zh_TW |
dc.subject.keyword | Pedestrian detection,on-road human detection,self-similarity,spatial relationship, | en |
dc.relation.page | 69 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-14 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 5.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。