請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60942完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林?輝 | |
| dc.contributor.author | Yi-Ming Liao | en |
| dc.contributor.author | 廖宜銘 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:37:36Z | - |
| dc.date.available | 2018-08-22 | |
| dc.date.copyright | 2013-08-22 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-13 | |
| dc.identifier.citation | [1]X. Gao, et al., 'In vivo molecular and cellular imaging with quantum dots,' Current Opinion in Biotechnology, vol. 16, pp. 63-72, 2005.
[2]A. Smith, et al., 'Bioconjugated quantum dots for in vivo molecular and cellular imaging,' Advanced Drug Delivery Reviews, vol. 60, pp. 1226-1240, 2008. [3]M. Bruchez Jr, 'Semiconductor Nanocrystals as Fluorescent Biological Labels,' Science, vol. 281, pp. 2013-2016, 1998. [4]T. S. Hauck, et al., 'In vivo Quantum-Dot Toxicity Assessment,' Small, vol. 6, pp. 138-144, 2010. [5]M. Bottrill and M. Green, 'Some aspects of quantum dot toxicity,' Chemical Communications, vol. 47, p. 7039, 2011. [6]M. Wang, et al., 'Upconversion nanoparticles: synthesis, surface modification and biological applications,' Nanomedicine: Nanotechnology, Biology and Medicine, vol. 7, pp. 710-729, 2011. [7]F. L. Mengxiao Yu, Zhigang Chen, He Hu, Cheng Zhan, Hong Yang, and Chunhui Huang, 'Laser Scanning Up-Conversion Luminescence Microscopy for Imaging Cells Labeled with Rare-Earth Nanophosphors,' Anal. Chem, pp. 930–935, 2009. [8]L.-Q. Xiong, et al., 'Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors,' Biomaterials, vol. 30, pp. 5592-5600, 2009. [9]X. Wang and Y. Li, 'Monodisperse nanocrystals: general synthesis, assembly, and their applications,' Chemical Communications, p. 2901, 2007. [10]Z.-L. Wang, et al., 'Simultaneous synthesis and functionalization of water-soluble up-conversion nanoparticles for in-vitro cell and nude mouse imaging,' Nanoscale, vol. 3, p. 2175, 2011. [11]H. Xing, et al., 'Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,' Biomaterials, vol. 33, pp. 1079-1089, 2012. [12]L. Cheng, et al., 'Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy,' Biomaterials, vol. 33, pp. 2215-2222, 2012. [13]C. Wang, et al., 'Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy,' Biomaterials, vol. 32, pp. 1110-1120, 2011. [14]C. Wang, et al., 'Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,' Biomaterials, 2011. [15]F. Wang and X. Liu, 'Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,' Chemical Society Reviews, vol. 38, p. 976, 2009. [16]J. M. F. v. D. a. M. F. H. Schuurmans, 'On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare‐earth ions ' J. Chem. Phys., vol. 78, 1983. [17]G. S. Yi and G. M. Chow, 'Synthesis of Hexagonal-Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence,' Advanced Functional Materials, vol. 16, pp. 2324-2329, 2006. [18]F. Wang, et al., 'Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,' Nature, vol. 463, pp. 1061-1065, 2010. [19]Guangshun Yi, Huachang Lu, Shuying Zhao, Yue Ge, Wenjun Yang, Depu Chen and Liang-Hong Guo 'Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors,' Nano LETTERS, vol. 4, pp. 2191-2196, 2004. [20]Y.-W. Z. Hao-Xin Mai, Rui Si, Zheng-Guang Yan, Ling-dong Sun,Li-Ping You, and Chun-Hua Yan, 'High-Quality Sodium Rare-Earth Fluoride Nanocrystals:Controlled Synthesis and Optical Properties,' JACS, 2006. [21]Z. Li and Y. Zhang, 'An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,' Nanotechnology, vol. 19, p. 345606, 2008. [22]L. Wang, et al., 'Bioconjugated silica nanoparticles: Development and applications,' Nano Research, vol. 1, pp. 99-115, 2008. [23]Daniele Gerion, Fabien Pinaud, Shara C. Williams, Wolfgang J. Parak, Daniela Zanchet, Shimon Weiss, and A. Paul Alivisatos, 'Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots,' J. Phys. Chem. B, vol. 105, pp. 8861-8871, 2001. [24]F. Chen, et al., 'A Sub-50-nm Monosized Superparamagnetic Fe3O4@SiO2T2-Weighted MRI Contrast Agent: Highly Reproducible Synthesis of Uniform Single-Loaded Core-Shell Nanostructures,' Chemistry - An Asian Journal, vol. 4, pp. 1809-1816, 2009. [25]Z. Li and Y. Zhang, 'Monodisperse Silica-Coated Polyvinylpyrrolidone/NaYF4 Nanocrystals with Multicolor Upconversion Fluorescence Emission,' Angewandte Chemie, vol. 118, pp. 7896-7899, 2006. [26]Z. Li, et al., 'Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles,' Advanced Materials, vol. 20, pp. 4765-4769, 2008. [27]Huachang Lu, Guangshun Yi, Shuying Zhao, Depu Chen, Liang-Hong Guo and Jing Chengb, 'Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties,' Journal of Materials Chemistry, 2004. [28]C.-C. M. Meng Wang, Wen-Xing Wang, Cui-Hong Liu, Ying-Fan Wu, Zhang-Run Xu, Chuan-Bin Mao and Shu-Kun Xu, 'Immunolabeling and NIR-Excited Fluorescent Imaging of HeLa Cells by Using NaYF4:Yb,Er Upconversion Nanoparticles,' ACS NANO, vol. 3, 2009. [29]R. Abdul Jalil and Y. Zhang, 'Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals,' Biomaterials, vol. 29, pp. 4122-4128, 2008. [30]J. Shan, et al., 'Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF4 upconversion nanophosphors,' Journal of Applied Physics, vol. 104, p. 094308, 2008. [31]J. G. Huang, et al., 'Emerging nanomaterials for targeting subcellular organelles,' Nano Today, vol. 6, pp. 478-492, 2011. [32]C.-Y. X. Stefan Hu¨ bner, and David A. Jans, 'The Protein Kinase CK2 Site (Ser111/112) Enhances Recognition of the Simian Virus 40 Large T-antigen Nuclear Localization Sequence by Importin,' THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 272, pp. 17191-17195, 1997. [33]N. P. a. M. Kann, 'Nuclear Pore Complex Is Able to Transport Macromolecules with Diameters of 39 nm,' Molecular Biology of the Cell, vol. 13, pp. 425-434, 2002. [34]W. C. W. C. Austin M. Derfus, Sangeeta N. Bhatia, 'Intracellular Delivery of Quantum Dots for Live Cell Labeling and Organelle Tracking,' Advanced Materials, vol. 16, 2004. [35]'Celluar Uptake of Tat Protein from Human Immunodeficiency Virus,' Cell Press, vol. 55, 1988. [36]P. M. Loewenstein, 'Autonomous Functional Domains of Chemically Synthesized Human lmmunodeficiency Virus Tat Trans-Activator Protein,' Cell Press, vol. 55, 1988. [37]E. Vives, 'A Truncated HIV-1 Tat Protein Basic Domain Rapidly Translocates through the Plasma Membrane and Accumulates in the Cell Nucleus,' Journal of Biological Chemistry, vol. 272, pp. 16010-16017, 1997. [38]C. Berry, 'Intracellualar delivery of nanoparticles via the HIV-1 tat peptide,' Nanomedicine, 2008. [39]L. Pan, et al., 'Nuclear-Targeted Drug Delivery of TAT Peptide-Conjugated Monodisperse Mesoporous Silica Nanoparticles,' Journal of the American Chemical Society, vol. 134, pp. 5722-5725, 2012. [40]J.-H. Choi, et al., 'Dye-Doped Silica Nanoparticle with HIV-1 TAT Peptide for Bioimaging,' Journal of Biomedical Nanotechnology, vol. 9, pp. 291-294, 2013. [41]M.-F. Joubert, 'Photon avalanche upconversion in rare earth laser materials,' Optical Material, pp. 181-203, 1999. [42]N. Bloembergen, 'Solid State Infrared Quantum Counters,' Physical Review Letters, vol. 2, pp. 84-85, 1959. [43]F. E. Auzel, 'Materials and devices using double-pumped-phosphors with energy transfer,' Proceedings of the IEEE, vol. 61, pp. 758-786, 1973. [44]W. E. C. Jay S. Chivian, and D. D. Eden, 'The photon avalanche: A new phenomenon in Pr3+‐based infrared quantum counters ' Appl. Phys. Lett, vol. 35, 1979. [45]林麗娟, 'X光繞射原理及其應用.' [46]N. Nitin, et al., 'Tat Peptide Is Capable of Importing Large Nanoparticles Across Nuclear Membrane in Digitonin Permeabilized Cells,' Annals of Biomedical Engineering, vol. 37, pp. 2018-2027, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60942 | - |
| dc.description.abstract | 傳統的生物螢光標籤大致可分為有機螢光染劑及無機半導體奈米晶體,有機螢光染劑雖具有較小之尺寸及較好之生物相容性,但容易發生光漂白之現象,導致無法長時間觀測螢光,且其光學性質也不利於觀察,而無機半導體奈米晶體雖然具有較佳之光學性質及光化學穩定性,但目前最常使用之選擇為量子點,而量子點內含有鎘離子,因此量子點仍有毒性之疑慮,而造成使用上的限制,而此二類螢光標籤皆是使用較高能量之光源激發出較低能量之螢光,所以此二類屬於下轉換材料,而使用高能量之光源激發生物樣品可能會遇到幾項限制,例如低穿透深度、破壞生物樣品及導致生物自體螢光而不利於觀察等,近年以來,上轉換奈米粒子發展的速度有愈來愈快之趨勢,原因在於上轉換奈米粒子具有以非線性之光學轉換的機制將近紅外光轉變為較高能量之可見光之能力,而使用近紅外光當作激發光源具有許多優勢,例如對生物樣品破壞性較小、高穿透深度及減少生物自體螢光等,除此之外,上轉換奈米粒子也同時具有高化學穩定性及低毒性之優點,雖然以油酸為介面活性劑合成之上轉換奈米粒子為疏水性,但目前已有研究團隊藉由修飾二氧化矽殼層於上轉換奈米粒子表面上改善其疏水性,使得上轉換奈米粒子能夠應用於生醫領域上,雖然目前已有文獻使用上轉換奈米粒子於細胞螢光顯影上,但僅著重於細胞質與細胞膜之螢光顯影,然而對於細胞內之胞器標定的研究仍佔少數,因此,本研究期許藉由分別接枝NLS(nuclear localization signal)及TAT 胜肽序列於二氧化矽包覆上轉換奈米粒子上,能夠成功達成細胞核之螢光顯影與追蹤。 | zh_TW |
| dc.description.abstract | Traditional fluorescent labels can be roughly categorized into two parts. One is fluorescent organic dye, the other is semiconductor nanocrystal. Both of them have advantages and limitations. Organic dye is the most popular fluorescent label due to its small size and good biocompatibility. However, there are some limitations coming out, such as high photobleaching efficiency and worse optical property. Fortunately, semiconductor nanocrystal improves some shortcomings of organic dye, e.g. excellent optical properties, good photo-stability and high quantum yield. However, the most widely used semiconductor nanocrystal is quantum dots (QDs), even though QDs are very toxic due to cadmium ions within their structure. Therefore, QDs are not suitable for long-term development. Besides, organic dye and QDs are down-conversion materials. They all need a high energy light source for excitation, such as ultra-violet. In this case, there are three problems to face including low penetration depth, biomolecules damage and low signal-to-noise ratio. In the last decade, new fluorescent labels started to rising up, called up-conversion nanoparticles (UCNPs). Compared to down-conversion material, UCNPs can transfer lower energy near infrared excitation into higher energy visible light by a nonlinear optical process. Moreover, UCNPs have many advantages such as autofluorescence absence, deeper tissue penetration depth, excellent optical and chemical stability, and low toxicity. However, in most cases, UCNPs are hydrophobic. Besides, research regarding the use of UCNPs as organelle targeting is not abundant. Therefore, in this study, NaYF4:Yb,Er upconversion nanoparticles were synthesized. After silica coating and amino group grafting, NaYF4:Yb,Er up-conversion nanoparticles could be made hydrophilic and later conjugated with biomolecules. For nuclear targeting purpose, nuclear localization signal (NLS) and TAT peptide was used to conjugate with silica coated NaYF4:Yb,Er nanoparticles. Our expectation is that NaYF4:Yb,Er@SiO2-NLS nanoparticles or NaYF4:Yb,Er@SiO2-TAT nanoparticles could be uptaken by cell and act as a nuclear tracker. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:37:36Z (GMT). No. of bitstreams: 1 ntu-102-R00548041-1.pdf: 3972727 bytes, checksum: 4ef0f1816320ee720ab254c055832fe0 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
中文摘要 i ABSTRACT ii 目錄 iv 圖目錄 vii 第一章 簡介 1 1.1 傳統的螢光標籤 1 1.2 上轉換奈米粒子 (upconversion nanoparticles) 2 1.3 上轉換奈米粒子之組成 3 1.3.1 活化劑 (activator) 3 1.3.2 感光劑 (sensitizer) 6 1.3.3 宿主材料 (host material) 7 1.3.4 NaYF4:Yb,Er 與 NaYF4:Yb,Tm 上轉換奈米粒子 8 1.4 NaYF4:Yb,Er上轉換奈米粒子之合成及表面修飾 10 1.4.1 NaYF4:Yb,Er上轉換奈米粒子之合成 10 1.4.2 NaYF4:Yb,Er上轉換奈米粒子之表面修飾 11 1.4.3 二氧化矽修飾之上轉換奈米粒子 11 1.4.4 二氧化矽層之表面修飾 12 1.5 NaYF4:Yb,Er@SiO2之生物相容性與細胞顯影 14 1.6 核定位訊號 17 1.7 TAT 胜肽序列 18 1.8 研究動機與目標 20 第二章 理論基礎 21 2.1 上轉換機制 21 2.1.1 Excited state absorption (ESA) 21 2.1.2 Energy transfer (ET) 22 2.1.3 Photon avalanche (PA) 23 第三章 實驗方法 24 3.1 實驗藥品. 24 3.2 實驗儀器 25 3.3 材料與方法 26 3.3.1 合成NaYF4:Yb,Er奈米粒子 26 3.3.2 合成NaYF4:Yb,Er@SiO2-NH2奈米粒子 27 3.3.3 合成NaYF4:Yb,Er@SiO2-NLS與NaYF4:Yb,Er @SiO2-TAT 28 3.4 材料定性分析 29 3.4.1 穿透式電子顯微鏡 TEM 29 3.4.2 X光繞射分析儀 XRD 29 3.4.3 雷射與光譜儀系統 PL 30 3.4.4 傅立葉轉換紅外線光譜儀 FTIR 31 3.5 細胞活性分析 32 3.5.1 實驗細胞株 32 3.5.2 WST-1 assay 32 3.6 細胞螢光影像分析 33 3.6.1 試片製作 33 3.6.2 雷射共軛焦顯微鏡 34 3.6.3 上機觀察及條件 34 第四章 結果與討論 35 4.1 穿透式電子顯微鏡分析 35 4.1.1 NaYF4:Yb,Er奈米粒子之型態、粒徑與元素分析 35 4.1.2 NaYF4:Yb,Er@SiO2-NH2奈米粒子之型態與粒徑分析 35 4.2 X光繞射分析 40 4.3 光學性質分析 41 4.3.1 NaYF4:Yb,Er奈米粒子之激發光譜分析 41 4.3.2 NaYF4:Yb,Er@SiO2-NH2 奈米粒子之激發光譜分析 41 4.3.3 生物組織穿透 44 4.4 傅立葉轉換紅外線光譜分析 45 4.5 WST-1細胞活性分析 48 4.5.1 NaYF4:Yb,Er@SiO2-NLS奈米粒子對細胞活性之分析 48 4.5.2 NaYF4:Yb,Er@SiO2-TAT奈米粒子對細胞活性之分析 48 4.6 材料於細胞內部分布分析 51 4.6.1 NaYF4:Yb,Er@SiO2-NLS奈米粒子之細胞螢光影像分析 51 4.6.2 NaYF4:Yb,Er@SiO2-TAT奈米粒子之細胞螢光影像分析 53 第五章 結論 54 參考文獻 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | NaYF4:Yb | zh_TW |
| dc.subject | 細胞螢光顯影 | zh_TW |
| dc.subject | 二氧化矽包覆 | zh_TW |
| dc.subject | TAT | zh_TW |
| dc.subject | Er | zh_TW |
| dc.subject | NLS | zh_TW |
| dc.subject | TAT | en |
| dc.subject | NaYF4 :Yb | en |
| dc.subject | Er | en |
| dc.subject | Silica coating | en |
| dc.subject | NLS | en |
| dc.subject | Upconversion | en |
| dc.subject | Cell image | en |
| dc.title | 製備上轉換奈米粒子當作細胞影像追蹤劑之研究 | zh_TW |
| dc.title | Synthesis of Upconversion Nanoparticles as a Fluorescent Tracker for Cell Image | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 姚俊旭,陳克紹,吳嘉文,楊禎明 | |
| dc.subject.keyword | NaYF4:Yb,Er,二氧化矽包覆,NLS,TAT,細胞螢光顯影, | zh_TW |
| dc.subject.keyword | Upconversion,NaYF4 :Yb,Er,Silica coating,NLS,TAT,Cell image, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
