請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60926完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱祈榮 | |
| dc.contributor.author | Hao Hsu | en |
| dc.contributor.author | 許皓 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:36:46Z | - |
| dc.date.available | 2018-08-20 | |
| dc.date.copyright | 2013-08-20 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-13 | |
| dc.identifier.citation | 李宣德、馮豐隆、林明進 (2001)。林木位置圖應用於香杉之疏伐業務。林業研究季刊 23(2),12。
李敬怡(2008)。應用地面光達於河川砂洲礫石二維碎形幾何分析。國立成功大學國立成功大學測量及空間資訊學系碩博士班學位論文。 林卓群(2006)。Lidar高精度數值地形應用於崩塌地區快速調查研究。國立成功大學國立成功大學資源工程學系碩博士班學位論文。 林務局嘉義林區管理處(2009)。阿里山地區柳杉、紅檜人工林疏伐規劃設計及森林視覺美質評估。行政院農業委員會林務局。 徐榮崇、張峻嘉 (2008)。苗栗縣南庄鄉觀光休閒產業發展分析:從“蕃地”到“咖啡之鄉”的時空歷程。鄉村旅遊研究 2(2),55-68。 張明政(2004)。三維雷射掃描技術應用於戶地測量之研究-以建物為例。國立中興大學國立中興大學土木工程學系學位論文。 曹峻瑋(2006)。三維雷射掃瞄技術於隧道工程之應用。國立臺灣大學國立臺灣大學土木工程學研究所學位論文。 莊子毅(2006)。以三維直線特徵進行地面光達點雲套合。國立臺灣大學國立臺灣大學土木工程學研究所學位論文。 郭朗哲、史天元 (2004)。地面光達資料疊合之研究-以竹東崩塌地為例。第二十三屆測量學術及應用研討會,323-332。 郭寶章(1998)。育林學各論。台北:國立編譯館。 陳永寬、詹進發、葉堃生、鄭祈全、施瑩瑄 (2005)。應用地面雷射掃描儀測算樹高之研究。航測及遙測學刊 10(4),327-336。 陳映璇、沈淑敏、詹瑜璋、謝有忠 (2009)。光達資料在臺灣海岸地形變遷上的應用。航測及遙測學刊 14(2),157-170。 馮豐隆、李宣德 (2000)。林木位置圖之製作與應用。林業研究季刊 22(2),61-72。 楊榮啟、林文亮(2003)。森林測計學。台北:國立編譯館。 管立豪 (2007)。光達技術在林業經營管理應用。台灣林業 33(6),25-29。 劉棠瑞、蘇鴻傑(1983)。森林植物生態學。台北:臺灣商務印書館。 劉燈烈(2004)。地面光達點雲資料的平差結合與影像敷貼。國立成功大學國立成功大學測量及空間資訊學系碩博士班學位論文。 賴志凱(2004)。地面雷射掃描儀的精度分析與檢定。國立成功大學國立成功大學測量及空間資訊學系碩博士班學位論文。 Aldred, A. H., & Bonnor, G. M. (1985). Application of airborne lasers to forest surveys. (M. of S. for F. Agriculture Canada, Ed.). Petawawa National Forestry Institute. Andersen, H.-E., McGaughey, R. J., & Reutebuch, S. E. (2005). Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment, 94(4), 441–449. Aschoff, T., & Spiecker, H. (2004). Algorithms for the automatic detection of trees in laser scanner data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(Part 8), W2. Avsar, M. D. (2004). The relationships between diameter at breast height, tree height and crown diameter in calabrian pines (Pinus brutia Ten.) of Baskonus Mountain, Kahramanmaras, Turkey. Journal of Biological Sciences, 4(4), 437–440. Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256. Bickford, C. A. (1957). Stocking, Normality, and Measurement of Stand Density. Journal of Forestry, 55(2), 99–104. Bienert, A., Scheller, S., Keane, E., Mullooly, G., & Mohan, F. (2006). Application of terrestrial laser scanners for the determination of forest inventory parameters. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(Part 5). Boehler, W., & Marbs, A. (2002). 3D Scanning Instruments. Proc. of the CIPA WG6 Int. Workshop on scanning for cultural heritage recording. Burkhart, H. E., & Tome, M. (2012). Modeling Forest Trees and Stands. Springer Netherlands. Devrim, A. (2003). Full automatic registration of laser scanner point clouds. ETH, Swiss Federal Institute of Technology Zurich, Institute of Geodesy and Photogrammetry. Fangi, G., Fiori, F., Gagliardini, G., & Malinverni, E. S. (2002). Fast and accurate close range 3D modelling by laser scanning system. International Archives of Photogrammetry Remote Sensing and Spatial Iinformation Sciences, 34(5/C7), 196–203. Flamant, P. H. (2005). Atmospheric and meteorological Lidar: from pioneers to space applications. Comptes Rendus Physique, 6(8), 864–875. Frohlich, C., Mettenleiter, M., Hartl, F., Dalton, G., & Hines, D. (2000). Imaging laser radar for 3-D modelling of real world environments. Sensor Review, 20(4), 273–282. Goodwin, N. R., Coops, N. C., & Culvenor, D. S. (2006). Assessment of forest structure with airborne LiDAR and the effects of platform altitude. Remote Sensing of Environment, 103(2), 140–152. Gorte, B., & Pfeifer, N. (2004). Structuring laser-scanned trees using 3D mathematical morphology. International Archives of Photogrammetry and Remote Sensing, 35(B5), 929–933. Henning, J. G., & Radtke, P. J. (2006). Detailed stem measurements of standing trees from ground-based scanning lidar. Forest Science, 52(1), 67–80. Hopkinson, C., Chasmer, L., Young-Pow, C., & Treitz, P. (2004). Assessing forest metrics with a ground-based scanning lidar. Canadian Journal of Forest Research, 34(3), 573–583. Huang, H., Li, Z., Gong, P., Cheng, X., Clinton, N., Cao, C., Ni, W., et al. (2011). Automated methods for measuring DBH and tree heights with a commercial scanning lidar. Photogramm. Eng. Remote Sensing, 77, 219–227. Irish, J. L., & Lillycrop, W. J. (1999). Scanning laser mapping of the coastal zone: the SHOALS system. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 123–129. Jennings, S. B., Brown, N. D., & Sheil, D. (1999). Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry, 72(1), 59–74. Koike, F. (1985). Reconstruction of two-dimensional tree and forest canopy profiles using photographs. Journal of Applied Ecology, 22(3), 921–929. Kumar, L., Schmidt, K., Dury, S., & Skidmore, A. (2002). Imaging spectrometry and vegetation science. Imaging spectrometry, 111–156. Leeuwen, M., & Nieuwenhuis, M. (2010). Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forest Research, 129(4), 749–770. Liang, X., & Hyyppa, J. (2013). Automatic stem mapping by merging several terrestrial laser scans at the feature and decision levels. Sensors (Switzerland), 13(2), 1614–1634. Lifu, Z., & Dongfang, L. (2011). A new estimation method of the forestry inventory parameter based on three-dimension laser scan technology. Electronic and Mechanical Engineering and Information Technology (EMEIT), 2011 International Conference (Vol. 4, pp. 2040–2043). Lim, K., Treitz, P., Wulder, M., St-Onge, B., & Flood, M. (2003). LiDAR remote sensing of forest structure. Progress in Physical Geography, 27(1), 88–106. Lovell, J. L., Jupp, D. L. B., Newnham, G. J., & Culvenor, D. S. (2011). Measuring tree stem diameters using intensity profiles from ground-based scanning lidar from a fixed viewpoint. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1), 46–55. Maas, H. G., Bienert, A., Scheller, S., & Keane, E. (2008). Automatic forest inventory parameter determination from terrestrial laser scanner data. International Journal of Remote Sensing, 29(5), 1579–1593. Moskal, L. M., & Zheng, G. (2011). Retrieving forest inventory variables with terrestrial laser scanning (TLS) in urban heterogeneous forest. Remote Sensing, 4(1), 1–20. Naesset, E. (1997). Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 52(2), 49–56. Nelson, R., Krabill, W., & MacLean, G. (1984). Determining forest canopy characteristics using airborne laser data. Remote Sensing of Environment, 15(3), 201–212. Pfeifer, N., & Winterhalder, D. (2004). Modelling of tree cross sections from terrestrial laser-scanning data with free form curves. ISPRS-International Archives of Photogrammetry,Remote Sensing and Spatial Information Sciences, 36, 76–81. Pirotti, F., Grigolato, S., Lingua, E., Sitzia, T., & Tarolli, P. (2012). Laser Scanner Applications in Forest and Environmental Sciences. Italian Journal of Remote Sensing-Rivista Italiana Di Telerilevamento, 44(1), 109–123. Roberts, J. W., Tesfamichael, S., Gebreslasie, M., Van Aardt, J., & Ahmed, F. B. (2007). Forest structural assessment using remote sensing technologies: an overview of the current state of the art. Southern Hemisphere Forestry Journal, 69(3), 183–203. Schumacher, F. X., & Hall, D. S. (1934). Logarithmic expression of timber-tree volume. US Government Printing Office. Seidel, D., Beyer, F., Hertel, D., Fleck, S., & Leuschner, C. (2011). 3D-laser scanning: A non-destructive method for studying above- ground biomass and growth of juvenile trees. Agricultural and Forest Meteorology, 151(10), 1305–1311. Simonse, M., Aschoff, T., Spiecker, H., & Thies, M. (2003). Automatic determination of forest inventory parameters using terrestrial laserscanning. Proceedings of the ScandLaser Scientific Workshop on Airborne Laser Scanning of Forests (Vol. 2003, pp. 252–258). Tesfamichael, S. G., Van Aardt, J. A. N., & Ahmed, F. (2010). Estimating plot-level tree height and volume of Eucalyptus grandis plantations using small-footprint, discrete return lidar data. Progress in Physical Geography, 34(4), 515–540. Thies, M., Pfeifer, N., Winterhalder, D., & Gorte, B. G. H. (2004). Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees. Scandinavian Journal of Forest Research, 19(6), 571–581. Thies, M., & Spiecker, H. (2004). Evaluation and future prospects of terrestrial laser scanning for standardized forest inventories. ISPRS Commission VIII Workshop, 36(8), 192–197. Van der Zande, D., Hoet, W., Jonckheere, I., Van Aardt, J., & Coppin, P. (2006). Influence of measurement set-up of ground-based LiDAR for derivation of tree structure. Agricultural and Forest Meteorology, 141(2-4), 147–160. Watt, P. J., & Donoghue, D. N. M. (2005). Measuring forest structure with terrestrial laser scanning. International Journal of Remote Sensing, 26(7), 1437–1446. Wehr, A., & Lohr, U. (1999). Airborne laser scanning - An introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 68–82. Yao, T., Yang, X., Zhao, F., Wang, Z., Zhang, Q., Jupp, D., Lovell, J., et al. (2011). Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar. Remote Sensing of Environment, 115(11), 2965–2974. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60926 | - |
| dc.description.abstract | 光達(LiDAR,Light Dection And Ranging)是近代快速發展的一種三維探測與資料收集技術,經過了長期的技術演進,光達的型式與種類已呈現出多樣化得面貌;地面光達掃描在過去主要是用來偵測與記錄建築物、工業管線、工程評估等具有明確且完整三維結構的物體,應用於森林環境之調查與資料收集的發展還處於初期的階段;相較於人工結構,森林中環境之複雜程度相當難以被衡量。本研究嘗試以1公頃大樣區來完整呈現出一林分中之狀態,希望藉由地面光達掃描建立高精度與高完整性之資料,發展出較有效率之萃取方式來取得樣區林分中的各種介量,如立木位置、胸高直徑、樹高等之完整資訊,來量化該林分之狀態。
研究結果顯示,光達資料在林木株數、立木位置與胸高直徑值之偵測及萃取上有不錯之表現,經與現場量測之結果進行比較後,總株數誤差在1 %以內,立木位置之差異情形沒有統計上的顯著差異;平均之胸高直徑值誤差量則為1~3 cm,顯示了在適當的掃描站點分布以及萃取方法下,地面光達將有能力偵測到大部分之林木位置與胸高直徑;然而在垂直結構上,地面光達掃描所取得的點雲資料在全林分樹高之推估上因遮蔽之影響與限制而難以有良好的表現,除了加強掃描站點規劃外,也可配合其他介量或是單木萃取之方式來取得樹高迴歸式以補其不足,在未來應著重於演算法與萃取過程之精簡與改進,並嘗試以小樣區高密度掃描方式來提升資料在垂直空間上之品質,以獲得更加完整之調查結果。 | zh_TW |
| dc.description.abstract | LiDAR(Light Detection And Ranging)is a kind of powerful instrument that can obtain three dimension information of targeted objects or environmental state. With long term developing, LiDAR has many different forms, such as airborne LiDAR or ground-based LiDAR. Ground-based LiDAR has been mainly used to measure the construction in civil engineering or industrial buildings that content complete shape features; but it’s more complicated and varied in forest environment because of the combination of different kind of organism. In this study, for analyzing the stand traits, we try to obtain the stand information in 1 ha plot with ground-based LiDAR and to retrieve the forest parameters from point cloud data.
The result shows that the data collected by ground-based LiDAR has a good performance in the total number of trees (average error is almost 1 %) and their DBH measurement (average error is 1~3 cm), but poor in tree height, volume and canopy construction detection. It should be improved to increase the quality of stand vertical construction data retrieved from point cloud data, but we notice that the environmental state plays a very important role in this issue. In the future studies, we should focus on developing better algorithms and retrieving processes, and design the proper investigation manner to gain the better and complete data with ground-based LiDAR. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:36:46Z (GMT). No. of bitstreams: 1 ntu-102-R00625026-1.pdf: 9481861 bytes, checksum: 37d8473192770650211a0340ea57352f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 謝 誌 i
摘 要 iii Abstract v 目 錄 vii 圖目錄 ix 表目錄 xiii 壹、前言 1 貳、文獻回顧 5 一、林分狀態之介量 5 二、光達掃描與資料萃取 11 (一)光達掃描技術 11 (二)林木介量資料萃取 19 參、研究材料與方法 27 一、研究材料 27 (一)研究區域 27 (二)地面光達掃描儀 30 二、研究流程 33 三、研究方法 35 (一)現場調查 35 (二)地面光達資料獲取 37 (三)光達資料萃取流程 41 (四)高程資料與林分剖面萃取方法 42 (五)立木介量萃取方法 46 肆、結果與討論 59 一、現場調查量測成果 59 (一)每木調查成果 59 (二)伐倒木量測成果 63 二、點雲掃描與前處理成果 69 (一)樣區點雲資料掃描成果 69 (二)林分高程與林分剖面萃取結果 74 三、立木介量萃取成果 87 (一)立木位置與胸高直徑 87 (二)立木冠層萃取成果 105 (三)光達單木測量成果 109 伍、結論 115 參考文獻 117 | |
| dc.language.iso | zh-TW | |
| dc.subject | 地面光達 | zh_TW |
| dc.subject | 點雲萃取 | zh_TW |
| dc.subject | 數值高程模型 | zh_TW |
| dc.subject | 數值地表模型 | zh_TW |
| dc.subject | 林分調查 | zh_TW |
| dc.subject | stand survey | en |
| dc.subject | ground-based LiDAR | en |
| dc.subject | point cloud extraction | en |
| dc.subject | DEM | en |
| dc.subject | DSM | en |
| dc.title | 應用地面光達掃描於林分狀況調查之探討 | zh_TW |
| dc.title | A Study on Measuring Stand Features from Ground-based LiDAR Data | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱志明,王兆桓 | |
| dc.subject.keyword | 地面光達,點雲萃取,數值高程模型,數值地表模型,林分調查, | zh_TW |
| dc.subject.keyword | ground-based LiDAR,point cloud extraction,DEM,DSM,stand survey, | en |
| dc.relation.page | 124 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 9.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
