請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60913完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林清富(Ching-Fuh Lin) | |
| dc.contributor.author | Tzu-Ching Lin | en |
| dc.contributor.author | 林子敬 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:36:06Z | - |
| dc.date.available | 2018-08-27 | |
| dc.date.copyright | 2013-08-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-14 | |
| dc.identifier.citation | [1] D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, 'Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,' Energy & Environmental Science, vol. 5, pp. 5874-5883, 2012.
[2] S. A. A. Jaber, 'REN21 Renewables 2012 Global Status Report,' REN21. [3] C. D. F. Antony, K.H. Remmers, 'Photovoltaics for Professionals,' Solarpraxis AG, 2007. [4] A W. Copeland, O. D. Black, and A. B. Garrett, 'The Photovoltaic Effect,' Chemical Reviews, vol. 31, pp. 177-226, 1942/08/01 1942. [5] T. Markvart, 'Solar Electricity,' Wiley, p. 3, 2000. [6] C. S. F. D. M. Chapin, and G. L. Pearson, 'A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power,' Journal of Applied Physics, vol. 25, pp. 676-677, 1954. [7] J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, '19.8% efficient 'honeycomb' textured multicrystalline and 24.4% monocrystalline silicon solar cells,' 73, Applied Physics Letters, 1998. [8] S. Wilkinson, Solar Industry, 2011. [9] A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, and M. Woodhouse, 'A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs,' Solar Energy Materials and Solar Cells, vol. 114, pp. 110-135, 2013. [10] S. C. Shiu, 'Si Nanostructure/Organic Hybrid Solar Cells and Fabrication of Single-Crystal Si Thin Foils,' Doctoral Dissertation, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 2012. [11] S. Pizzini, 'Towards solar grade silicon: Challenges and benefits for low cost photovoltaics,' Solar Energy Materials and Solar Cells, vol. 94, pp. 1528-1533, 2010. [12] D. B. S. Benagli, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hotzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, L. Castens, 'High-Efficiency Amorphous Silicon Devices on LPCVD-ZnO TCO Prepared in Industrial KAI TM-M R&D Reactor,' 24th European Photovoltaic Solar Energy Conference, 21-25 September 2009, Hamburg, Germany, pp. 2293 - 2298, 2009. [13] K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, 'Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,' Applied Physics A: Materials Science & Processing, vol. 69, pp. 179-185, 1999. [14] J. Britt and C. Ferekides, 'Thin‐film CdS/CdTe solar cell with 15.8% efficiency,' Applied Physics Letters, vol. 62, p. 2851, 1993. [15] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, '19.9%-Efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,' Prog. Photovoltaics Res. Appl., vol. 16, p. 235, 2008. [16] L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, 'Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,' Nat Photon, vol. 6, pp. 180-185, 2012. [17] N. Koide, R. Yamanaka, and H. Katayama, 'Recent Advances of Dye-Sensitized Solar Cells and Integrated Modules at SHARP,' MRS Online Proceedings Library, vol. 1211, pp. null-null, 2009. [18] R. W. McClelland, C. O. Bozler, J. C. C. Fan, and 'A technique for producing epitaxial films on reusable substrates,' Applied Physics Letters, vol. 37, pp. 560-562, 1980. [19] C. Bozler, R. McClelland, and J. Fan, 'Ultrathin, high-efficiency solar cells made from GaAs films prepared by the CLEFT Process,' Electron Device Letters, IEEE, vol. 2, pp. 203-205, 1981. [20] M. Bruel, 'Silicon on insulator material technology,' Electronics letters, vol. 31, pp. 1201-1202, 1995. [21] M. Bruel, 'Application of hydrogen ion beams to silicon on insulator material technology,' Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 108, pp. 313-319, 1996. [22] J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, '19%‐efficient and 43 μm‐thick crystalline Si solar cell from layer transfer using porous silicon,' Progress in Photovoltaics: Research and Applications, vol. 20, pp. 1-5, 2012. [23] F. Dross, J. Robbelein, B. Vandevelde, E. Van Kerschaver, I. Gordon, G. Beaucarne, and J. Poortmans, 'Stress-induced large-area lift-off of crystalline Si films,' Applied Physics A: Materials Science & Processing, vol. 89, pp. 149-152, 2007. [24] R. A. Rao, L. Mathew, S. Saha, S. Smith, D. Sarkar, R. Garcia, R. Stout, A. Gurmu, E. Onyegam, D. Ahn, D. Xu, D. Jawarani, J. Fossum, and S. Banerjee, 'A novel low cost 25μm thin exfoliated monocrystalline Si solar cell technology,' 37th IEEE PVSC, pp. 001504- 001507, 19-24 Jun 2011. [25] J. Nelson, The physics of solar cells vol. 57: World Scientific, 2003. [26] M. A. Green, 'Solar Cells: Operating Principles, Technology and System Applications,' Kensington, NSW : Univ. of New South Wales, p. Chapter 4, 1998. [27] S. Avasthi, S. Lee, Y. L. Loo, and J. C. Sturm, 'Role of Majority and Minority Carrier Barriers Silicon/Organic Hybrid Heterojunction Solar Cells,' Advanced Materials, 2011. [28] S. M. Sze and K. K. Ng, 'Physics of Semiconductor Devices,' Wiley, p. 730, 2007. [29] A. Goetzberger, J. Knobloch, and B. Voss, 'crystalline silicon solar cells,' Wiley, 1998. [30] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering: Wiley, 2011. [31] M. Wright and A. Uddin, 'Organic—inorganic hybrid solar cells: A comparative review,' Solar Energy Materials and Solar Cells, vol. 107, pp. 87-111, 2012. [32] X. S. Hua, Y. J. Zhang, and H. W. Wang, 'The effect of texture unit shape on silicon surface on the absorption properties,' Solar Energy Materials and Solar Cells, vol. 94, pp. 258-262, 2010. [33] S. Y. Lien, C. H. Yang, C. H. Hsu, Y. S. Lin, C. C. Wang, and D. S. Wuu, 'Optimization of textured structure on crystalline silicon wafer for heterojunction solar cell,' Materials Chemistry and Physics, 2012. [34] J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, 'Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,' Nature Photonics, vol. 1, pp. 176-179, 2007. [35] Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, and Y. H. Chang, 'Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,' Nature Nanotechnology, vol. 2, pp. 770-774, 2007. [36] K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, 'Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,' Nano Letters, vol. 12, pp. 1616-1619, 2012. [37] Y.-J. Y. K.-Q. Peng, S.-P. Gao, J. Zhu, 'Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,' Advanced Materials, vol. 14, pp. 1164–1167, 2002. [38] V. Torres-Costa and R. Martin-Palma, 'Application of nanostructured porous silicon in the field of optics. A review,' Journal of materials science, vol. 45, pp. 2823-2838, 2010. [39] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, 'Coaxial silicon nanowires as solar cells and nanoelectronic power sources,' Nature, vol. 449, pp. 885-889, 2007. [40] J. Bauer, F. Fleischer, O. Breitenstein, L. Schubert, P. Werner, U. Gosele, and M. Zacharias, 'Electrical properties of nominally undoped silicon nanowires grown by molecular-beam epitaxy,' Applied Physics Letters, vol. 90, pp. 012105-012105-3, 2007. [41] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, 'High performance silicon nanowire field effect transistors,' Nano Letters, vol. 3, pp. 149-152, 2003. [42] J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, 'Silicon vertically integrated nanowire field effect transistors,' Nano Letters, vol. 6, pp. 973-977, 2006. [43] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, 'Enhanced thermoelectric performance of rough silicon nanowires,' Nature, vol. 451, pp. 163-167, 2008. [44] K. Q. Peng, X. Wang, L. Li, X. L. Wu, and S. T. Lee, 'High-performance silicon nanohole solar cells,' Journal of the American Chemical Society, vol. 132, pp. 6872-6873, 2010. [45] K.-Q. Peng and S.-t. Lee, 'Silicon Nanowires for Photovoltaic Solar Energy Conversion,' Advanced Materials, vol. 23, pp. 198-215, 2011. [46] L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, 'Silicon nanowire solar cells,' Applied Physics Letters, vol. 91, pp. 233117-233117-3, 2007. [47] Y. Lu and A. Lal, 'High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography,' Nano Letters, vol. 10, pp. 4651-4656, 2010. [48] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, 'High-performance lithium battery anodes using silicon nanowires,' Nature Nanotechnology, vol. 3, pp. 31-35, 2007. [49] C. K. Chan, R. N. Patel, M. J. O’Connell, B. A. Korgel, and Y. Cui, 'Solution-grown silicon nanowires for lithium-ion battery anodes,' ACS nano, vol. 4, pp. 1443-1450, 2010. [50] K. Peng, J. Jie, W. Zhang, and S. T. Lee, 'Silicon nanowires for rechargeable lithium-ion battery anodes,' Applied Physics Letters, vol. 93, pp. 033105-033105-3, 2008. [51] X. Zhou, J. Hu, C. Li, D. Ma, C. Lee, and S. Lee, 'Silicon nanowires as chemical sensors,' Chemical physics letters, vol. 369, pp. 220-224, 2003. [52] W. Chen, H. Yao, C. H. Tzang, J. Zhu, M. Yang, and S. T. Lee, 'Silicon nanowires for high-sensitivity glucose detection,' Applied Physics Letters, vol. 88, pp. 213104-213104-3, 2006. [53] R. J. Martin-Palma, M. Manso-Silvan, and V. Torres-Costa, 'Biomedical applications of nanostructured porous silicon: a review,' Journal of Nanophotonics, vol. 4, pp. 042502-042502-20, 2010. [54] R. Wagner and W. Ellis, 'Vapor‐liquid‐solid mechanism of single crystal growth,' Applied Physics Letters, vol. 4, pp. 89-90, 1964. [55] A. I. Hochbaum, R. Fan, R. He, and P. Yang, 'Controlled growth of Si nanowire arrays for device integration,' Nano Letters, vol. 5, pp. 457-460, 2005. [56] V. T. Renard, M. Jublot, P. Gergaud, P. Cherns, D. Rouchon, A. Chabli, and V. Jousseaume, 'Catalyst preparation for CMOS-compatible silicon nanowire synthesis,' Nature Nanotechnology, vol. 4, pp. 654-657, 2009. [57] X. Lu, T. Hanrath, K. P. Johnston, and B. A. Korgel, 'Growth of single crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate,' Nano Letters, vol. 3, pp. 93-99, 2003. [58] J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, 'Control of thickness and orientation of solution-grown silicon nanowires,' Science, vol. 287, pp. 1471-1473, 2000. [59] A. T. Heitsch, D. D. Fanfair, H. Y. Tuan, and B. A. Korgel, 'Solution− Liquid− Solid (SLS) Growth of Silicon Nanowires,' Journal of the American Chemical Society, vol. 130, pp. 5436-5437, 2008. [60] Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gosele, 'Metal-Assisted Chemical Etching of Silicon: A Review,' Advanced Materials, vol. 23, pp. 285-308, 2011. [61] K. Peng, A. Lu, R. Zhang, and S. T. Lee, 'Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,' Advanced Functional Materials, vol. 18, pp. 3026-3035, 2008. [62] C. B. Li, K. Fobelets, and Z. A. K. Durrani, 'Study of Two-Step Electroless Etched Si Nanowire Arrays,' Applied Mechanics and Materials, vol. 110, pp. 3284-3288, 2012. [63] S. C. Shiu, S. C. Hung, H. J. Syu, and C. F. Lin, 'Fabrication of silicon nanostructured thin film and its transfer from bulk wafers onto alien substrates,' Journal of The Electrochemical Society, vol. 158, pp. D95-D98, 2011. [64] C. Chartier, S. Bastide, and C. Levy-Clement, 'Metal-assisted chemical etching of silicon in HF–H2O2,' Electrochimica Acta, vol. 53, pp. 5509-5516, 2008. [65] Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gosele, 'Oxidation Rate Effect on the Direction of Metal-Assisted Chemical and Electrochemical Etching of Silicon,' The Journal of Physical Chemistry C, vol. 114, pp. 10683-10690, 2010/06/24 2010. [66] S. C. Shiu, S. C. Hung, J. J. Chao, and C. F. Lin, 'Massive transfer of vertically aligned Si nanowire array onto alien substrates and their characteristics,' Applied Surface Science, vol. 255, pp. 8566-8570, 2009. [67] S.-C. Shiu, S.-B. Lin, S.-C. Hung, and C.-F. Lin, 'Influence of pre-surface treatment on the morphology of silicon nanowires fabricated by metal-assisted etching,' Applied Surface Science, vol. 257, pp. 1829-1834, 2011. [68] H.-J. Syu, S.-C. Shiu, and C.-F. Lin, 'Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%,' Solar Energy Materials and Solar Cells, vol. 98, pp. 267-272, 2012. [69] S.-C. Shiu, S.-C. Hung, H.-J. Syu, and C.-F. Lin, 'Fabrication of Silicon Nanostructured Thin Film and Its Transfer from Bulk Wafers onto Alien Substrates,' Journal of The Electrochemical Society, vol. 158, pp. D95-D98, 2011. [70] K. Peng, Y. Yan, S. Gao, and J. Zhu, 'Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,' Advanced Functional Materials, vol. 13, pp. 127-132, 2003. [71] K.-Q. P. M.-L Zhang, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-Tong Lee, and N.-B. Wong, 'Metal-Assisted Chemical Etching,' The Journal of Physics Chemistry C, vol. 112, pp. 4444-4450, 2008. [72] K. J. Weber, A. W. Blakers, M. J. Stocks, J. H. Babaei, V. A. Everett, A. J. Neuendorf, and P. J. Verlinden, 'A novel low-cost, high-efficiency micromachined silicon solar cell,' Electron Device Letters, IEEE, vol. 25, pp. 37-39, 2004. [73] 'In reference 6, ρ is defined as [HF]/([HF]+[H2O2]), where [HF] and [H2O2] are the molar concentration of HF and H2O2. In the report, n=3 in reaction (3.1) is observed in high ρ (=80%) solution..' [74] T. C. Lin, S. C. Shiu, K. L. Pun, H. J. Syu, and C. F. Lin, 'Layer transfer of crystalline Si thin film by metal-assisted chemical etching concerning different H2O2/HF ratios,' in Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, 2012, pp. 000346-000349. [75] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, 'Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,' Nature materials, vol. 9, pp. 239-244, 2010. [76] N. A. Aziz, B. Bais, A. A. Hamzah, and B. Y. Majlis, 'Characterization of HNA etchant for silicon microneedles array fabrication,' in Semiconductor Electronics, 2008. ICSE 2008. IEEE International Conference on, 2008, pp. 203-206. [77] K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, 'Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles,' Advanced Functional Materials, vol. 16, pp. 387-394, 2006. [78] F. Zhang, X. Han, S. Lee, and B. Sun, 'Heterojunction with organic thin layer for three dimensional high performance hybrid solar cells,' Journal of Materials Chemistry, vol. 22, pp. 5362-5368, 2012. [79] L. He, C. Jiang, H. Wang, D. Lai, and Rusli, 'High efficiency planar Si/organic heterojunction hybrid solar cells,' Applied Physics Letters, vol. 100, pp. 073503-073503-3, 2012. [80] L. He, C. Jiang, Rusli, D. Lai, and H. Wang, 'Highly efficient Si-nanorods/organic hybrid core-sheath heterojunction solar cells,' Applied Physics Letters, vol. 99, pp. 021104-3, 2011. [81] S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, 'Hybrid Silicon Nanocone–Polymer Solar Cells,' Nano Letters, vol. 12, pp. 2971-2976, 2012/06/13 2012. [82] S. Avasthi, S. Lee, Y.-L. Loo, and J. C. Sturm, 'Role of Majority and Minority Carrier Barriers Silicon/Organic Hybrid Heterojunction Solar Cells,' Advanced Materials, vol. 23, pp. 5762-5766, 2011. [83] M.-L. Zhang, K.-Q. Peng, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-T. Lee, and N.-B. Wong, 'Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching,' The Journal of Physical Chemistry C, vol. 112, pp. 4444-4450, 2008/03/01 2008. [84] S. Kirchmeyer, A. Elschner, and K. Reute, 'Pedot: Principles and Applications of an Intrinsically Conductive Polymer,' CRC Press, p. 211, 2011. [85] H. Lining, Rusli, J. Changyun, W. Hao, and D. Lai, 'Simple Approach of Fabricating High Efficiency Si Nanowire/Conductive Polymer Hybrid Solar Cells,' Electron Device Letters, IEEE, vol. 32, pp. 1406-1408, 2011. [86] L. He, D. Lai, H. Wang, C. Jiang, and Rusli, 'High-Efficiency Si/Polymer Hybrid Solar Cells Based on Synergistic Surface Texturing of Si Nanowires on Pyramids,' Small, vol. 8, pp. 1664-1668, 2012. [87] S. E. Han and G. Chen, 'Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,' Nano Letters, vol. 10, pp. 1012-1015, 2010/03/10 2010. [88] F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X. Wang, and H. Zheng, 'Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,' Journal of Applied Physics, vol. 109, pp. 084306-5, 2011. [89] S. Thiyagu, B. P. Devi, and P. Zingway, 'One-step catalyst-assist formation of silicon nanohole arrays with omnidirectional antireflection properties,' in Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, 2012, pp. 000818-000821. [90] K.-Q. Peng, X. Wang, L. Li, X.-L. Wu, and S.-T. Lee, 'High-Performance Silicon Nanohole Solar Cells,' Journal of the American Chemical Society, vol. 132, pp. 6872-6873, 2010/05/26 2010. [91] T.-G. Chen, P. Yu, S.-W. Chen, F.-Y. Chang, B.-Y. Huang, Y.-C. Cheng, J.-C. Hsiao, C.-K. Li, and Y.-R. Wu, 'Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,' Progress in Photovoltaics: Research and Applications, pp. n/a-n/a, 2012. [92] Y. Qu, H. Zhou, and X. Duan, 'Porous silicon nanowires,' Nanoscale, vol. 3, pp. 4060-4068, 2011. [93] S. Strehlke, S. Bastide, and C. Levy-Clement, 'Optimization of porous silicon reflectance for silicon photovoltaic cells,' Solar Energy Materials and Solar Cells, vol. 58, pp. 399-409, 1999. [94] H. J. Syu, S. C. Shiu, Y. Hung Jr, C. C. Hsueh, T. C. Lin, T. Subramani, S. L. Lee, and C. F. Lin, 'Influences of silicon nanowire morphology on its electro‐optical properties and applications for hybrid solar cells,' Progress in Photovoltaics: Research and Applications, 2013. [95] P. Wurfel, 'Physics of Solar Cells,' Wiley, p. 175, 2009. [96] S.-C. Shiu, J.-J. Chao, S.-C. Hung, C.-L. Yeh, and C.-F. Lin, 'Morphology Dependence of Silicon Nanowire/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Heterojunction Solar Cells,' Chemistry of Materials, vol. 22, pp. 3108-3113, 2010/05/25 2010. [97] S. Thiyagu, B. P. Devi, and Z. Pei, 'Fabrication of large area high density, ultra-low reflection silicon nanowire arrays for efficient solar cell applications,' Nano Research, vol. 4, pp. 1136-1143, 2011/11/01 2011. [98] J. Oh, H.-C. Yuan, and H. M. Branz, 'An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,' Nature Nanotechnology, vol. 7, pp. 743-748, 2012. [99] M. A. Green, 'Solar Cells: Operating Principles, Technology and System Applications,' Kensington, NSW : Univ. of New South Wales, p. 176, 1998. [100] S. M. Sze and K. K. Ng, 'Physics of Semiconductor Devices,' Wiley, p. 170, 2007. [101] S. M. Sze and K. K. Ng, 'Physics of Semiconductor Devices,' Wiley, p. 723, 2007. [102] W. H. Lu, C. W. Wang, W. Yue, and L. W. Chen, 'Si/PEDOT:PSS core/shell nanowire arrays for efficient hybrid solar cells,' Nanoscale, vol. 3, pp. 3631-3634, 2011. [103] T. G. Chen, B. Y. Huang, E. C. Chen, P. Yu, and H. F. Meng, 'Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,' Applied Physics Letters, vol. 101, pp. 033301-033301-5, 2012. [104] L. He, C. Jiang, H. Wang, and D. Lai, 'Si Nanowires Organic Semiconductor Hybrid Heterojunction Solar Cells Toward 10% Efficiency,' ACS Applied Materials & Interfaces, vol. 4, pp. 1704-1708, 2012. [105] F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, 'Efficiency limits for single-junction and tandem solar cells,' Solar Energy Materials and Solar Cells, vol. 90, pp. 2952-2959, 2006. [106] P. Gruenbaum, J. Gan, R. King, and R. Swanson, 'Stable passivations for high-efficiency silicon solar cells,' in Photovoltaic Specialists Conference, 1990., Conference Record of the Twenty First IEEE, 1990, pp. 317-322. [107] N. E. Grant and K. R. McIntosh, 'Passivation of a (100) silicon surface by silicon dioxide grown in nitric acid,' Electron Device Letters, IEEE, vol. 30, pp. 922-924, 2009. [108] D. Liu, Y. Zhang, X. Fang, F. Zhang, T. Song, and B. Sun, 'An 11%-Power-Conversion-Efficiency Organic–Inorganic Hybrid Solar Cell Achieved by Facile Organic Passivation,' Electron Device Letters, IEEE, vol. 34, pp. 345-347, 2013. [109] M. W. Rowell, M. A. Topinka, M. D. McGehee, H.-J. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, 'Organic solar cells with carbon nanotube network electrodes,' Applied Physics Letters, vol. 88, pp. 233506-233506-3, 2006. [110] J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, 'Solution-processed metal nanowire mesh transparent electrodes,' Nano Letters, vol. 8, pp. 689-692, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60913 | - |
| dc.description.abstract | 能源短缺以及由石化燃料產生排放的溫室效應氣體已成為近十年全球重要的議題。因此,太陽能電池成為極佳的石化燃料替代能源。然而以目前主流的晶矽太陽能電池來看,它的成本依舊很高,且大部分來自矽晶圓與電池製造的成本。一些可能的替代方案如薄膜太陽電池由於相較起晶矽太陽能電池效率仍然很低,因此現階段仍無法取代晶矽電池的地位。所以,我們的目標便是降低晶矽的成本以及製作較便宜的高效率太陽能電池,以期能超越現今的市電同價成本。
在本論文中,我們著重兩部份的改進。第一,我們嘗試用薄化與重複利用矽晶圓來降低材料成本。我們並以溶液為本的金屬輔助化學蝕刻法 (MacEtch) 來制備矽奈米結構與薄膜。透過這個晶圓薄化技術,原則上一片單一的矽晶圓可以被使用來製作超過70片以上的薄膜。有了矽奈米結構的輔助,矽薄膜在很薄的矽材料中呈現出非常突出的光捕捉效應。實驗結果顯示我們的薄膜在經X光繞射(XRD)量測後有單晶特性,並且6μm得厚度就可以擁有超過98%的吸收率(此吸收率是經由積分球量測出來的穿透率和反射率計算而得)。 再者,我們的薄膜在經過矽晶圓重複使用後仍能達到高效率的光吸收。透過蝕刻加熱法或增加雙氧水/氫氟酸的體積比例來拋光晶圓,矽晶圓可以再重複使用。我們的結果顯示雙氧水/氫氟酸的體積比在1:1時,薄膜的材料利用率可達93%以便減少材料損耗。 第二,我們可以藉由使用有機材料來降低晶矽太陽能電池的製程成本。矽與有機混合的太陽能電池具有低溫製程的優勢,且使用薄又透明的有機材料可以使矽材料有更多的吸光。在實驗過程中,我們透過不同催化劑銀的分佈來改變矽奈米結構的填充率,可以有效降低奈米結構的反射率。實驗結果顯示52.2%高填充率的矽奈米緞帶有7.7%的低平均反射率及8.7%的功率轉換效率(η)。這裡和矽奈米結構搭配的是聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)/ITO結構。當奈米結構的填充率增加到60%以上時會形成奈米洞的結構。從結果來看,用深度淺的矽奈米洞可以達到高短路電流(Jsc)以及高功率轉換效率是因為奈米洞極佳的光捕捉。最佳的矽奈米洞/PEDOT:PSS元件表現為37.8 mA/cm2的短路電流與10.8%的效率。在開路電壓(Voc)與等效少數載子生命周期(τ)的研究上顯示在矽表面上的載子複合與元件表現有很緊密的關係,並經由分析找出奈米洞光捕捉與表面載子複合的平衡。在未來可以透過我們可重複利用晶圓的薄化技術與矽奈米洞/有機材料搭配的結構來達成具有前瞻性的高效率低成本太陽能電池! | zh_TW |
| dc.description.abstract | Energy shortage and green-house gas emission from fossil fuels has been the top global issue over the last few decades. Due to this concern, solar cell becomes a very good alternative for power generation to replace fossil fuels. However, the cost of current mainstream crystalline silicon solar cell is still high, consisting of large part of Si wafer and cell processing costs. Some possible alternatives like thin film solar cells still suffer from low efficiency compared to crystalline silicon, and thus cannot replace much of crystalline Si solar cell for now. Therefore, our aim is to lower the crystalline Si cost and fabricate cheaper high-efficiency solar cell so that we may surpass the current grid parity level.
In this thesis, we focus on two parts. First, we try to lower the material cost by thinning Si and reusing Si substrate. The solution based metal-assisted chemical etching (MacEtch) is used to produce Si nanostructure and thin film. In this wafer thinning method, one single Si wafer can be exploited to more than 70 thin films in principle. Together with the assistance of Si nanostructure, the Si thin film provides excellent light-trapping effect with thin Si layer. The result shows that our thin film has single crystalline quality from X-ray diffraction measurement, and holds high absorption over 98% with thin 6μm thickness, which is calculated from thin-film transmittance and reflectance by integrating sphere. Moreover, the high absorption of thin film is achieved even when Si wafer is reused. The wafer reusing method can be completed by either heating treatment during etching or the higher H2O2/HF volume ratio for wafer polishing. With 1:1 H2O2/HF volume ratio, we obtain high-efficiency thin-film material utilization of 93% to reduce material consumption. Second, the processing cost of crystalline Si solar cell can be reduced by applying organic materials to form Si/organic hybrid solar cells. Si/organic hybrid solar cells have the advantage with low-temperature process, and the light absorption of Si can be improved with highly-transparent organic material. In the experiments, we change the filling fraction of Si nanostructure through different Ag catalyst distribution to lower the reflectance. The results show that with high filling fraction of 52.2%, where Si is in the shape of nano-ribbon, has the low average reflectance of 7.7% and achieve power conversion efficiency (η) of 8.7% with Si/poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (also PEDOT:PSS) /ITO structure. Moreover, when the filling fraction is much increased to more than 60%, nanohole structure is formed. From our results, large short-circuit current (Jsc) and high power conversion efficiency can be achieved with shallow Si nanohole structure because of the excellent light trapping of nanohole. The best performance of Si/ PEDOT: PSS /ITO device exhibits Jsc of 37.8 mA/cm2 and η of 10.8%. The investigation of open circuit voltage (Voc) and effective minority carrier lifetime (τ) shows the Si surface carrier recombination has very close relationship with nanohole depth and corresponding device performance, and shallow nanohole depth has lower carrier recombination rate and higher τ. As a result, our high-efficiency solar cell is achieved with the appropriate nanohole depth, where light trapping effect and surface recombination should be balanced. In the future, high-efficiency and low-cost solar cell is promising with wafer thinning technology on reusable substrates and Si nanohole/organic structure. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:36:06Z (GMT). No. of bitstreams: 1 ntu-102-R99943056-1.pdf: 7534438 bytes, checksum: 05aebfddbe11a5879faa6cc726d6e86f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii Abstract iii 摘要 vi List of Figures viii List of Tables xi Contents xii 1. Chapter 1 Introduction 1 1-1 Background 1 1-2 Cost issue of solar cell 5 1-3 Paper review and thesis objective 6 1-4 Thesis overview 8 2. Chapter 2 Strategies for cost-competitive and high-efficiency Si solar cell 10 2-1 Introduction 10 2-2 Solar cell device physics 10 2-2-1 Equivalent circuit 10 2-2-2 PN junction c-Si solar cell 14 2-3 Nanotechnologies for crystalline Si solar cell 17 2-3-1 Introduction 17 2-3-2 Metal-assisted chemical etching of Si nanostructures for photovoltaic applications 18 2-4 Summary 21 3. Chapter 3 Technology for thinning single-crystalline silicon wafer on reusable substrate 23 3-1 Reusing Si wafer to fabricate Si thin films by heating treatment 23 3-1-1 Introduction 23 3-1-2 Experimental 24 3-1-3 Results and discussion 26 3-1-4 Conclusion 29 3-2 Investigation of H2O2/HF volume ratios on Si thin film fabrication for high material utilization efficiency 29 3-2-1 Introduction 29 3-2-2 Experimental 30 3-2-3 Results and Discussion 31 3-2-4 Conclusion 38 3-3 The comparison and characterization of fabricated Si thin films 38 3-3-1 Introduction 38 3-3-2 Experimental 39 3-3-3 Results and discussion 43 3-3-4 Conclusion 56 3-4 Reusing Si wafer to fabricate thin films by HNA polishing method 58 3-4-1 Introduction 58 3-4-2 Experimental 58 3-4-3 Results and discussion 59 4. Chapter 4 Silicon nanostructure with high filling fraction of Si/organic hybrid solar cells 61 4-1 Fabrication of silicon nanostructure with high filling fraction of Si 61 4-1-1 Introduction 61 4-1-2 Dependence of nanostructure filling fraction on Ag deposition time 62 4-1-3 Dependence of nanowire filling fraction on Si surface treatment 67 4-2 Enhancement on the performance of Si/organic hybrid solar cells by Si nanostructure with high filling fraction of Si 70 4-2-1 Introduction 70 4-2-2 Experimental 71 4-2-3 Results and discussion 73 4-2-4 Conclusion 80 4-3 Light-trapping Si nanohole structure for high efficiency Si/organic hybrid solar cells 81 4-3-1 Introduction 81 4-3-2 Experimental 82 4-3-3 Results and discussion 86 4-3-4 Conclusion 98 5. Chapter 5 Conclusions and future work 99 5-1 Summary of results 99 5-2 Future work 101 Publications 102 References 104 | |
| dc.language.iso | en | |
| dc.subject | 矽奈米緞帶 | zh_TW |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | 薄膜 | zh_TW |
| dc.subject | 無損耗晶圓切割 | zh_TW |
| dc.subject | 矽奈米結構 | zh_TW |
| dc.subject | 光捕捉 | zh_TW |
| dc.subject | 抗反射 | zh_TW |
| dc.subject | 矽奈米線 | zh_TW |
| dc.subject | 矽奈米洞 | zh_TW |
| dc.subject | 矽有機混合太陽能電池 | zh_TW |
| dc.subject | 表面複合 | zh_TW |
| dc.subject | thin film | en |
| dc.subject | surface recombination | en |
| dc.subject | Si organic hybrid solar cell | en |
| dc.subject | Si nanohole | en |
| dc.subject | Si nano-ribbon | en |
| dc.subject | Si nanowire | en |
| dc.subject | anti-reflection | en |
| dc.subject | light trapping | en |
| dc.subject | Si nanostructure | en |
| dc.subject | solar cell | en |
| dc.subject | kerfless wafering | en |
| dc.title | 可重複利用基板的單晶矽晶圓薄化技術與矽奈米結構/有機混成型太陽能電池的效率提升 | zh_TW |
| dc.title | Technology for Thinning Single-crystalline Silicon Wafer on Reusable Substrate and Enhancement on the Efficiency of Silicon Nanostructure/Organic Hybrid Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何文章(Wen-Jeng Ho),黃鼎偉(Ding-Wei Huang),吳肇欣(Chao-Hsin Wu) | |
| dc.subject.keyword | 太陽能電池,薄膜,無損耗晶圓切割,矽奈米結構,光捕捉,抗反射,矽奈米線,矽奈米緞帶,矽奈米洞,矽有機混合太陽能電池,表面複合, | zh_TW |
| dc.subject.keyword | solar cell,thin film,kerfless wafering,Si nanostructure,light trapping,anti-reflection,Si nanowire,Si nano-ribbon,Si nanohole,Si organic hybrid solar cell,surface recombination, | en |
| dc.relation.page | 112 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 7.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
