Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60911
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張所鋐(Shuo-Hung Chang)
dc.contributor.authorYu-Chih Chenen
dc.contributor.author陳宇志zh_TW
dc.date.accessioned2021-06-16T10:36:00Z-
dc.date.available2018-08-20
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-13
dc.identifier.citation[1] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C60:Buckminsterfullerene,” Nature, Vol. 318, pp. 162, 1985
[2] R. Saito, G. Dresslhaus, and M. Dresswlhau, “Physical properties of carbon nanotube,” Imperial College Press, 1998
[3] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58, 1991
[4] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, Vol. 363, pp. 603-605, 1993
[5] M. Fennimore, T. D. Yuzvinsky, W. Q. Han, M. S. Fuhrer, J. Cumings, and A. Zettl, “Rotational actuators based on carbon nanotubes,” Nature, Vol. 424, Issue 6947, pp. 408-410, 2003
[6] V. P. Veedu, A. Y. Cao, X. S. Li, K. G. Ma, C. Soldano, S. Kar, P. M. Ajayan, and M. N. Ghasemi-Nejhad, “Multifunctional composites using reinforced laminae with carbon-nanotube forests,” Nature Materials, Vol. 5, Issue 6, pp. 457-462, 2006
[7] I. K. Song, Y. S. Cho, G. S. Choi, J. B. Park, and D. J. Kim, “ The growth mode change in carbon nanotube synthesis in plasma-enhanced chemical vapor deposition,” Diamond Relate Material, Vol. 13 (4-8), pp. 1210–3, 2004
[8] Chris Bower, Otto Zhou, Wei Zhu, D. J. Werder, and Sungho Jin, “ Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition,” Applied Physics Letters, Vol. 77 (17), pp. 2767–2769, 2000
[9] C. N. R. Rao and R. Sen, “Large aligned-nanotube bundles from ferrocene pyrolysis,” Chemical Communications, Vol. (15), pp.1525-1526, 1998
[10] G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H. Son, and D. G. Kim, “Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition,” Journal Applied Physics, Vol. 91(6), pp. 3847–3854, 2002
[11] Y. Y. Wei, G. Eres, V. I. Merkulov, and D. H. Lowndes, “Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition,” Applied Physic Letter, Vol. 78(10), pp. 1394–1396, 2001
[12] M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,” Journal Applied Physics, Vol. 90(10), pp. 5308–5317, 2001
[13] K. B. K. Teo, S-B Lee, M. Chhowalla, V. Semet, V.T. Binh, O. Groening, M. Castignolles, A. Loiseau, G. Pirio, P. Legagneux, D. Pribat, and D.G. Hasko, “ Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres – how uniform do they grow?” Nanotechnology, Vol. 14(2), pp. 204–211, 2003
[14] R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth (New method growth catalysis from impurity whisker epitaxial + large crystals Si E),” Applied Physics Letters, Vol. 4, Issue 5, pp. 89, 1964
[15] Yahachi Saito, Tadanobu Yoshikawa, Mitsumasa Okuda, Naoya Fujimoto, Saeki Yamamuro, Kimio Wakoh, Kenji Sumiyama, Kenji Suzuki, Atsuo Kasuya, and Yuichiro Nishina, “Iron particles nesting in carbon cages grown by arc discharge,” Chemical Physics Letters, Vol. 212(3-4), pp.379-383, 1993
[16] C. N. R. Rao and R. Sen, “Large aligned-nanotube bundles from ferrocene pyrolysis,” Chemical Communications, Vol. (15), pp.1525-1526, 1998
[17] Leonhardt, M. Ritschel, D. Elefant, N. Mattern, K. Biedermann, S. Hampel, Ch. Muller, T. Gemming, and B. Buchner, “Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene,” Journal Of Applied Physics, Vol. 98, pp. 074315, 2005
[18] C. Muller, S. Hampel, D. Elefant, K. Biedermann, A. Leonhardt, M. Ritschel, and B. Buchner, “Iron filled carbon nanotubes grown on substrates with thin metal layers and their magnetic properties,” Carbon , Vol. 44, pp. 1746–1753, 2006
[19] R. Kozhuharova-Koseva, M. Hofmann, A. Leonhardt, I. Monch, T. Muhl, M. Ritschel, and B. Buchner, “Relation between Growth Parameters and Morphology of Vertically Aligned Fe-filled Carbon Nanotubes,” Fullerenes, Nanotubes, and Carbon Nanostructures, Vol. 15, pp. 135–143, 2007
[20] Qingfeng Liu, Zhi-Gang Chen, Bilu Liu, Wencai Ren, Feng Li Hongtao Cong, and Hui-Ming Cheng, “Synthesis of different magnetic carbon nanostructures by the pyrolysis of ferrocene at different sublimation temperatures,” Carbon, Vol. 46, pp. 1892–1902, 2008
[21] C. X. Shi and H. T. Cong, “Tuning the coercivity of Fe-filled carbon-nanotube arrays by changing the shape anisotropy of the encapsulated Fe nanoparticles,” Journal Of Applied Pysics, Vol. 104, pp. 034307, 2008
[22] C. Muller, D. Elefant, A. Leonhardt, and B. Buchner, “Incremental analysis of the magnetization behavior in iron-filled carbon nanotube arrays,” Journal Of Applied Physics Vol. 103, pp. 034302, 2008
[23] Christian Muller, Albrecht Leonhardt, Ma’rcia Cristina Kutz, and Bernd Buchner, “Growth Aspects of Iron-Filled Carbon Nanotubes Obtained by Catalytic Chemical Vapor Deposition of Ferrocene,” Journal Physics Chemical C, Vol. 113, pp. 2736–2740, 2009
[24] J. Cheng, X.P. Zou, G. Zhu, M.F. Wang, Y. Su, G.Q. Yang, and X.M. Lu, “Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties,” Solid State Communications, Vol. 149, pp. 1619-1622, 2009
[25] Xuchun Guia, KunlinWang,WenxiangWang, JinquanWei, Xianfeng Zhang, Ruitao Lv, Yi Jia, Qinke Shu, Feiyu Kang, and DehaiWu, “The decisive roles of chlorine-contained precursor and hydrogen for the filling Fe nanowires into carbon nanotubes,” Materials Chemistry and Physics, Vol. 113, pp. 634–637, 2009
[26] T. Muhl, D. Elefant, A. Graff, R. Kozhuharova, A. Leonhardt, I. Monch, M. Ritschel, P. Simon, S. Groudeva-Zotova, and C. M. Schneider, “Magnetic propaerties of aligned Fe-filled carbon nanotubes,” Journal Appllied Physics, Vol. 93, No. 10, 2003
[27] Xuchun Guia, KunlinWang,WenxiangWang, JinquanWei, Xianfeng Zhang, Ruitao Lv, Yi Jia, Qinke Shu, Feiyu Kang, and DehaiWu, “The decisive roles of chlorine-contained precursor and hydrogen for the filling Fe nanowires into carbon nanotubes,” Materials Chemistry and Physics, Vol. 113, pp. 634–637, 2009
[28] Xianfeng Zhang, Anyuan Cao, Bingqing Wei, Yanhui Li, Jinquan Wei, Cailu Xu, and Dehai Wu, “Rapid growth of well-aligned carbon nanotube arrays,” Chemical Physics Letters, Vol. 362, pp. 285–290, 2002
[29] Fengxia Geng and Hongtao Cong, “Fe-filled carbon nanotube array with high coercivity,” Physic B, Vol. 382, pp. 300–304, 2006
[30] S. Hampel, A. Leonhardt, D. Selbmann, K. Biedermann, D. Elefant, Ch. Muller, T. Gemming, and B. Buchner, “Growth and characterization of filled carbon nanotubes with ferromagnetic properties,” Carbon, 44, pp. 2316–2322, 2006
[31] Wenxiang Wang, Kunlin Wang, Ruitao Lv, Jinquan Wei, Xianfeng Zhang, Feiyu Kang, Jianguo Chang, Qinke Shu, Yuquan Wang, and Dehai Wu, “Synthesis of Fe-filled thin-walled carbon nanotubes with high filling ratio by using dichlorobenzene as precursor,” Carbon, Vol. 45, pp. 1105–1136, 2007
[32] Illayathambi Kunadian, Rodney Andrews, Dali Qiana, and M. Pinar Mengu, “Growth kinetics of MWCNTs synthesized by a continuous-feed CVD method,” Carbon, Vol. 47, pp. 384 –395, 2009
[33] Christian P. Deck and Kenneth Vecchio, “Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes,” Carbon, Vol. 43, pp. 2608–2617, 2005
[34] J. Cheng, X.P. Zou, G. Zhu, M.F. Wang, Y. Su, G.Q. Yang, and X.M. Lu, “Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties,” Solid State Communications, Vol. 149, pp. 1619-1622, 2009
[35] B. Satishkumar, A. Govindaraj, and C. Rao, “Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ.” Chemical Physics Letters, Vol. 307(3-4), pp.158-162, 1999
[36] C. C. Su and S. H. Chang, “Comparison of the efficiency of various substrates in growing vertically aligned carbon nanotube carpets” Carbon, under revision, 2011
[37] Christian P. Deck and Kenneth Vecchio, “Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes,” Carbon, Vol. 43, pp. 2608–2617, 2005
[38] Christian Muller, Albrecht Leonhardt, Ma’rcia Cristina Kutz, and Bernd Buchner, “Growth Aspects of Iron-Filled Carbon Nanotubes Obtained by Catalytic Chemical Vapor Deposition of Ferrocene,” J. Phys. Chem. C, Vol. 113, pp. 2736–2740, 2009
[39] Michael F L De Volder, Sei Jin Park, Sameh H Tawfick, Daniel O Vidaud and A John Hart, “Fabrication and electrical integration of robust carbon nanotube micropillars by self-directed elastocapillary densification,” Journal of Micromechanics and Microengineering, Vol. 21, pp. 045-033, 2011
[40] Sameh Tawfick, Michael De Volder, and A. John Hart, “Structurally Programmed Capillary Folding of Carbon Nanotube Assemblies,” Langmuir, Vol. 27, pp. 6389-6394, 2011
[41] T. L. Li, J. H. Ting, and B. Z. Yang, “Conducting properties of suspended carbon nanotubes grown by thermal chemical vapor deposition,” J. Vac. Sci. Technol. B, Vol. 25, pp. 1221-1226, 2007
[42] S. C. Lim, J. H. Jang, D. J. Bae, G. H. Han, S. Lee, I. S. Yeo, and Y. H. Young, “Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability,” Applied Physics Letters, Vol. 95, pp. 264103 - 264103-3, 2009
[43] J. O. Lee, C. Park, J. J. Kim, J. Kim, J. W. Park, and K. H. Yoo, “Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method,” Journal of Physics D: Applied Physics, Vol. 33, pp. 1953-1938, 2000
[44] K. Rykaczewski, M. R. Henry, S. K. Kim, A. G. Fedorov, D. Kulkarni, S. Singamaneni, and V. V. Tsukruk, “The effect of the geometry and material properties of a carbon joint produced by electron beam induced deposition on the electrical resistance of a multiwalled carbon nanotube-to-metal contact interface,” Nanotechnology, Vol. 21, pp. 0352021–03520212, 2010
[45] C. X. Chen, L. J. Yan, E. S. W. Kong, and Y. F. Zhang, “Ultrasonic nanowelding of carbon nanotubes to metal electrodes,” Nanotechnology, Vol. 17, pp. 2192–2198, 2006
[46] Claudia A. Santini, Alexander Voldin, Chris Van Haesendonck, Stefan De Gendt, Guido Groeseneken, and Philippe M. Vereecken, “Carbon Nanotube-Carbon Nanotube Contacts as an Alternative Towards Low Resistance Horizontal Interconnects,” Carbon, Vol. 49, pp. 4004-4012 , 2011
[47] N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu, and H. Fukunaga, “Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor,” Carbon, Vol. 48, pp. 680-686, 2010
[48] N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, “Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor,” Acta Materialia, Vol. 56, pp. 2929-2936, 2008
[49] X. Li, C. Levy, and L. Elaadil, “Multiwalled carbon nanotube film for strain sensing,” Nanotechnology, Vol. 19, pp. 379-382, 2008
[50] M. K. Njuguna, C. Yan, N. Hu, J. M. Bell, and P. K. D. V. Yarlagadda, “Sandwiched Carbon Nanotube Film as Strain Sensor,” Composites: Part B, Vol. 43, pp. 2711-2717, 2012
[51] R. C. Hibbeler, “Mechanics of materials,” Practice-Hall, South Asia, 2007
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60911-
dc.description.abstract奈米碳管製作應變感測器已有多項研究,但大部分都為單壁奈米碳管或是奈米碳管混合聚合物之研究,鮮少有純粹以多壁碳管薄膜製作感測器的研究。利用微量的奈米碳管與聚合物製作的奈米複合材料來當作應變感測器,皆是利用聚合物本身的穿隧效應來達到電阻變化,卻很少用到奈米碳管本身的優異特性。有部分的文獻使用大量的奈米碳管製作成薄膜,但是薄膜裡的奈米碳管皆是雜亂無序的排列。
本論文利用一種創新之手法來製作奈米碳管的應變感測器,其中有兩個最特別之處,其一是利用丙酮蒸氣使垂直式排列奈米碳管叢倒下形成水平式排列奈米碳管叢,並增加其容積密度。倒下的水平式奈米碳管叢具有排列性,可以提升穩定性和靈敏度,增加水平式奈米碳管叢的容積密度可以使感測器在拉伸的情況下增加水平式奈米碳管之間的接觸形成並聯,使電阻變小。另一個特別之處是在金屬電極上成長奈米碳管叢來連接水平式排列奈米碳管叢的兩端。電極成長的奈米碳管與水平式奈米碳管接觸可以大幅降低接觸電阻,以提升電阻變化率。
本研究製作了不同參數的感測器,並進行了多種的量測,包含了靜態拉伸量測、動態拉伸量測、不同溫度的電阻量測。其中以丙酮蒸氣製作水平式奈米碳管叢,電極用不鏽鋼線成長三層填鐵奈米碳管叢的應變感測器表現最好,其應變規因子可以高達50。此法製作的應變感測器還有許多空間可以再提升靈敏度和穩定性,甚至是大幅縮小感測器之尺寸,以應用在未來各種奈米科技的微小裝置上。
zh_TW
dc.description.abstractThere are many researches about producing strain gauge with carbon nanotubes (CNTs). But most of them are studying single-wall carbon nanotubes or nanocompsites of low loading CNTs and polymer. There are few researches about producing stain gauge with multi-wall carbon nanotubes. In these researches, the resistance change of nanocomposite stain sensors is obtained due to the tunneling effect between adjacent CNTs rather than using the intrinsic characteristics of CNTs. Some of the researches produce strain sensors with film of high loading CNTs, but all carbon nanotubes in films are non-aligned.
In this paper, we provide a novel way to produce stain sensors with CNTs. There are two special parts in this work. The first part is self-directed acetone infiltration. It can lay the vertically aligned carbon nanotubes (VA-CNTs) into the horizontally aligned carbon nanotubes (HA-CNTs) and increasing the bulk density of HA-CNTs. Because the CNTs of sensors are aligned, it can improve the sensitivity and stability. Additionally, the large bulk density of HA-CNTs dominates paralleling effect among CNTs under stretching. The resistance of sensors decreases with paralleling contact between HA-CNT and HA-CNT. The other part is growth iron-filled CNTs on electrodes which connect to HA-CNTs. The results decrease the resistance of sensors prominently, and improve the sensitivity of sensors.
We produce sensors with different parameters and proceed with multiple measurements on these sensors. Like static measurements, dynamic measurements, and the resistance changes with different temperatures. The best sensors we produced are using the acetone vapor as the self-directed liquid infiltration to turn VA-CNTs into HA-CNTs and growth three layers iron-filled CNTs on electrodes made by stainless steel wires. The gauge factor of the sensors made by this way can reaches about 50. It still has great potential to promote sensitivity and stability, and even decrease the size largely for applications in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:36:00Z (GMT). No. of bitstreams: 1
ntu-102-R00522627-1.pdf: 11919934 bytes, checksum: 75d3f3cbb7246e07ccadcb709b7c9524 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
圖目錄 viii
表目錄 xv
第一章、緒論 1
1.1 前言 1
1.2 研究動機 2
第二章、文獻回顧 3
2.1 奈米碳管 3
2.1.1 奈米碳管之組成結構與物理特性 3
2.1.2 奈米碳管之合成方法 6
2.1.3 奈米碳管之成長機制 8
2.2 填鐵奈米碳管叢 11
2.2.1 填鐵碳管叢之成長方法 11
2.2.2 填鐵碳管叢之成長填鐵機制 12
2.3 自我導向之毛細現象的水平排列奈米碳管叢 14
2.4 奈米碳管與奈米碳管之接觸電阻 17
2.5 奈米碳管叢應變感測器之應用 19
第三章、實驗流程與架構 23
3.1 試片的準備 24
3.1.1 矽基材試片的準備 24
3.1.2 電極的準備 30
3.2 蒸鍍氧化鋁緩衝層與鐵催化劑薄膜 31
3.3 三段式高溫爐之化學氣相沉積 31
3.3.1 矽基材成長無填鐵碳管叢 32
3.3.2 電極成長填鐵奈米碳管叢 34
3.4 顯微分析 36
3.5 水平式之排列奈米碳管叢 40
3.5.1 利用液態水滴使垂直式排列之奈米碳管叢倒下 40
3.5.2 利用丙酮蒸氣使垂直式排列奈米碳管叢倒下 41
3.6 應變感測器之設計製作 42
3.7 應變感測器之電阻變化原理 49
3.8 應變感測器的拉伸量測架構 51
3.8.1 應變感測器之靜態量測 54
3.8.2 應變感測器之動態量測 54
3.9 應變感測器的溫度變化量測架構 57
第四章、實驗結果與討論 58
4.1 水平式排列之奈米碳管叢的製作 58
4.1.1 不同梯形之寬度對於成長垂直式排列奈米碳管叢的影響 58
4.1.2 不同液體對奈米碳管叢的毛細作用 63
4.2 金屬電極成長填鐵奈米碳管叢 72
4.2.1 銅導線成長不同層數的填鐵奈米碳管叢 72
4.2.2 不鏽鋼線成長不同層數的填鐵奈米碳管叢 75
4.3 接觸電極之探討 78
4.3.1 金屬電極成長完填鐵奈米碳管叢的電阻 78
4.3.2 金屬電極與水平式排列奈米碳管叢的接觸電阻 82
4.4 不同應變感測器的製作 87
4.5 不同應變感測器的拉伸量測 91
4.5.1 銅導線製作不同參數之感測器的靜態與動態量測 92
4.5.2 不鏽鋼線製作不同參數之感測器的靜態與動態量測 97
4.5.3 利用銀膠連接水平式奈米碳管叢和電極之感測器的量測 101
4.6 溫度對於應變感測器的電阻之影響 102
4.7 比較其他文獻利用奈米碳管叢製作的應變感測器 104
第五章、結論與未來展望 106
5.1 結論 106
5.2 未來展望 107
參考文獻 109
dc.language.isozh-TW
dc.subject容積密度zh_TW
dc.subject穿隧效應zh_TW
dc.subject應變規因子zh_TW
dc.subject填鐵奈米碳管叢zh_TW
dc.subjectiron-filled CNTsen
dc.subjecttunneling effecten
dc.subjectgauge factoren
dc.subjectbulk densityen
dc.title水平式排列奈米碳管叢應變感測器之設計與研究zh_TW
dc.titleDesign and Research of Horizontally Aligned Carbon Nanotube Forest Strain Gaugesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor蘇志中(Chih-Chung Su)
dc.contributor.oralexamcommittee施文彬(Wen-Pin Shih)
dc.subject.keyword填鐵奈米碳管叢,穿隧效應,應變規因子,容積密度,zh_TW
dc.subject.keywordiron-filled CNTs,tunneling effect,gauge factor,bulk density,en
dc.relation.page115
dc.rights.note有償授權
dc.date.accepted2013-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
11.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved