Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60905
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于昌平(Chang-Ping Yu)
dc.contributor.authorChia-Wei Chienen
dc.contributor.author簡嘉緯zh_TW
dc.date.accessioned2021-06-16T10:35:43Z-
dc.date.available2022-07-01
dc.date.copyright2020-07-20
dc.date.issued2020
dc.date.submitted2020-07-02
dc.identifier.citation中華民國行政院環境保護署 (2013). 地下水污染管制標準. 環署土字第 1020109478 號令.
卢晓峰 and 王策 (2011). 有 机 纳 米 功 能 材 料, 北京: 科学出版社.
卓采蓉 (2011). '加入聚丙烯酸 (PAA) 對多孔性聚乙烯醇縮甲醛泡棉 (PVF) 物性影響的研究.'
陳家全, 李家維 and 楊瑞森 (1991). 生物電子顯微鏡學, 臺北市: 行政院國家科學委員會精密儀器發展中心.
Abdel-Raouf, N., A. A. Al-Homaidan and I. B. M. Ibraheem (2012). 'Microalgae and wastewater treatment.' Saudi Journal of Biological Sciences 19(3): 257-275.
ACS (2011). ACS GCI Pharmaceutical Roundtable Solvent Selection Guide.
Agarwal, S. and A. Greiner (2011). 'On the way to clean and safe electrospinning—green electrospinning: emulsion and suspension electrospinning.' Polymers for Advanced Technologies 22(3): 372-378.
Al-Qunaibit, M. H. (2004). 'A kinetic study of uptake of some cationic entities by the alga Chlorella vulgaris.' Chemindix 6: 1-12.
Becker, T., M. Schlaak and H. Strasdeit (2000). 'Adsorption of nickel(II), zinc(II) and cadmium(II) by new chitosan derivatives.' Reactive and Functional Polymers 44(3): 289-298.
Benemann, J. R. (1997). 'CO2 mitigation with microalgae systems.' Energy Conversion and Management 38: S475-S479.
Bhardwaj, N. and S. C. Kundu (2010). 'Electrospinning: A fascinating fiber fabrication technique.' Biotechnology Advances 28(3): 325-347.
Bhattarai, N., D. Edmondson, O. Veiseh, F. A. Matsen and M. Zhang (2005). 'Electrospun chitosan-based nanofibers and their cellular compatibility.' Biomaterials 26(31): 6176-6184.
Borowitzka, M. (2006). 'Biotechnological environmental applications of microalgae.' Biotechnological Environmental Applications of Microalgae.[Online] Murdoch University.
Bretschger, O., J. B. Osterstock, W. E. Pinchak, S. i. Ishii and K. E. Nelson (2010). 'Microbial Fuel Cells and Microbial Ecology: Applications in Ruminant Health and Production Research.' Microbial Ecology 59(3): 415-427.
Buchko, C. J., L. C. Chen, Y. Shen and D. C. Martin (1999). 'Processing and microstructural characterization of porous biocompatible protein polymer thin films.' Polymer 40(26): 7397-7407.
Byrne, F. P., S. Jin, G. Paggiola, T. H. M. Petchey, J. H. Clark, T. J. Farmer, A. J. Hunt, C. Robert McElroy and J. Sherwood (2016). 'Tools and techniques for solvent selection: green solvent selection guides.' Sustainable Chemical Processes 4(1): 7.
Chen, C. and J. Wang (2008). 'Removal of Pb2+, Ag+, Cs+ and Sr2+ from aqueous solution by brewery's waste biomass.' Journal of Hazardous Materials 151(1): 65-70.
Crespo, J. G., S. Velizarov and M. A. Reis (2004). 'Membrane bioreactors for the removal of anionic micropollutants from drinking water.' Current Opinion in Biotechnology 15(5): 463-468.
Darnall, D. W., B. Greene, M. T. Henzl, J. M. Hosea, R. A. McPherson, J. Sneddon and M. D. Alexander (1986). 'Selective recovery of gold and other metal ions from an algal biomass.' Environmental Science Technology 20(2): 206-208.
Deitzel, J. M., J. Kleinmeyer, D. Harris and N. C. Beck Tan (2001). 'The effect of processing variables on the morphology of electrospun nanofibers and textiles.' Polymer 42(1): 261-272.
Doshi, H., C. Seth, A. Ray and I. L. Kothari (2008). 'Bioaccumulation of Heavy Metals by Green Algae.' Current Microbiology 56(3): 246-255.
Dror, Y., J. Kuhn, R. Avrahami and E. Zussman (2008). 'Encapsulation of Enzymes in Biodegradable Tubular Structures.' Macromolecules 41(12): 4187-4192.
Duruibe, J. O., M. Ogwuegbu and J. Egwurugwu (2007). 'Heavy metal pollution and human biotoxic effects.' International Journal of physical sciences 2(5): 112-118.
Eroglu, E., V. Agarwal, M. Bradshaw, X. Chen, S. M. Smith, C. L. Raston and K. S. Iyer (2012). 'Nitrate removal from liquid effluents using microalgae immobilized on chitosan nanofiber mats.' Green Chemistry 14(10): 2682-2685.
Formhals, A. (1934). United States: Patent Application Publication. US patent. 1: 504.
Geng, X., O.-H. Kwon and J. Jang (2005). 'Electrospinning of chitosan dissolved in concentrated acetic acid solution.' Biomaterials 26(27): 5427-5432.
Gupta, V. K. and A. Rastogi (2008). 'Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies.' Journal of Hazardous Materials 152(1): 407-414.
Ho, Y.-S. (2006). 'Review of second-order models for adsorption systems.' Journal of Hazardous Materials 136(3): 681-689.
Hsien, T.-Y. and G. L. Rorrer (1995). 'Effects of Acylation and Crosslinking on the Material Properties and Cadmium Ion Adsorption Capacity of Porous Chitosan Beads.' Separation Science and Technology 30(12): 2455-2475.
Hu, H., J. H. Xin, H. Hu, A. Chan and L. He (2013). 'Glutaraldehyde–chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films.' Carbohydrate Polymers 91(1): 305-313.
Jung, K.-H., M.-W. Huh, W. Meng, J. Yuan, S. H. Hyun, J.-S. Bae, S. M. Hudson and I.-K. Kang (2007). 'Preparation and antibacterial activity of PET/chitosan nanofibrous mats using an electrospinning technique.' Journal of Applied Polymer Science 105(5): 2816-2823.
Kalayci, V. E., P. K. Patra, Y. K. Kim, S. C. Ugbolue and S. B. Warner (2005). 'Charge consequences in electrospun polyacrylonitrile (PAN) nanofibers.' Polymer 46(18): 7191-7200.
Kessick, R. and G. Tepper (2004). 'Microscale polymeric helical structures produced by electrospinning.' Applied Physics Letters 84(23): 4807-4809.
Klein, S., J. Kuhn, R. Avrahami, S. Tarre, M. Beliavski, M. Green and E. Zussman (2009). 'Encapsulation of Bacterial Cells in Electrospun Microtubes.' Biomacromolecules 10(7): 1751-1756.
Klossner, R. R., H. A. Queen, A. J. Coughlin and W. E. Krause (2008). 'Correlation of Chitosan’s Rheological Properties and Its Ability to Electrospin.' Biomacromolecules 9(10): 2947-2953.
Kumar, A., S. Ergas, X. Yuan, A. Sahu, Q. Zhang, J. Dewulf, F. X. Malcata and H. van Langenhove (2010). 'Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions.' Trends in Biotechnology 28(7): 371-380.
Lasat, M. (1999). 'Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues.' Journal of Hazardous Substance Research 2(1): 5.
Li, D., J. T. McCann, Y. Xia and M. Marquez (2006). 'Electrospinning: A Simple and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes.' Journal of the American Ceramic Society 89(6): 1861-1869.
Li, L. and Y.-L. Hsieh (2006). 'Chitosan bicomponent nanofibers and nanoporous fibers.' Carbohydrate Research 341(3): 374-381.
Li, L., Y. Li, L. Cao and C. Yang (2015). 'Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning.' Carbohydrate Polymers 125: 206-213.
Li, Z. and C. Wang (2013). One-dimensional nanostructures: electrospinning technique and unique nanofibers, Springer.
Lombi, E., F. J. Zhao, S. J. Dunham and S. P. McGrath (2001). 'Phytoremediation of Heavy Metal–Contaminated Soils.' Journal of Environmental Quality 30: 1919-1926.
Malik, A. (2004). 'Metal bioremediation through growing cells.' Environment International 30(2): 261-278.
Mata, T. M., A. A. Martins and N. S. Caetano (2010). 'Microalgae for biodiesel production and other applications: A review.' Renewable and Sustainable Energy Reviews 14(1): 217-232.
Mei, Y., S. Runjun, F. Yan, W. Honghong, D. Hao and L. Chengkun (2019). Preparation, characterization and kinetics study of chitosan/PVA electrospun nanofiber membranes for the adsorption of dye from water. Journal of Polymer Engineering. 39: 459.
Milledge, J. J. (2011). 'Commercial application of microalgae other than as biofuels: a brief review.' Reviews in Environmental Science and Bio/Technology 10(1): 31-41.
Mojaveri, S. J., S. F. Hosseini and A. Gharsallaoui (2020). 'Viability improvement of Bifidobacterium animalis Bb12 by encapsulation in chitosan/poly(vinyl alcohol) hybrid electrospun fiber mats.' Carbohydrate Polymers 241: 116278.
Monteiro, C. M., P. M. Castro and F. X. Malcata (2012). 'Metal uptake by microalgae: underlying mechanisms and practical applications.' Biotechnology progress 28(2): 299-311.
Nicolella, C., M. C. M. van Loosdrecht and J. J. Heijnen (2000). 'Wastewater treatment with particulate biofilm reactors.' Journal of Biotechnology 80(1): 1-33.
Nourbakhsh, M., Y. Sag̃, D. Özer, Z. Aksu, T. Kutsal and A. Çag̃lar (1994). 'A comparative study of various biosorbents for removal of chromium(VI) ions from industrial waste waters.' Process Biochemistry 29(1): 1-5.
Ohkawa, K., D. Cha, H. Kim, A. Nishida and H. Yamamoto (2004). 'Electrospinning of Chitosan.' Macromolecular Rapid Communications 25(18): 1600-1605.
Okaya, T. (1992). 'General properties of polyvinyl alcohol in relation to its applications.' Polyvinyl alcohol developments. John Wiley and Sons Ltd., New York, NY: 1-27.
Pa, J.-H. and T. L. Yu (2001). 'Light Scattering Study of Chitosan in Acetic Acid Aqueous Solutions.' Macromolecular Chemistry and Physics 202(7): 985-991.
Pakravan, M., M.-C. Heuzey and A. Ajji (2011). 'A fundamental study of chitosan/PEO electrospinning.' Polymer 52(21): 4813-4824.
Perpetuo, E. A., C. B. Souza and C. A. O. Nascimento (2011). Engineering bacteria for bioremediation. Progress in Molecular and Environmental Bioengineering-From Analysis and Modeling to Technology Applications, IntechOpen.
RAI, L. C., J. P. GAUR and H. D. KUMAR (1981). 'PHYCOLOGY AND HEAVY-METAL POLLUTION.' Biological Reviews 56(2): 99-151.
Reznik, S. N., A. L. Yarin, E. Zussman and L. Bercovici (2006). 'Evolution of a compound droplet attached to a core-shell nozzle under the action of a strong electric field.' Physics of Fluids 18(6): 062101.
Rinaudo, M. (2006). 'Chitin and chitosan: Properties and applications.' Progress in Polymer Science 31(7): 603-632.
Rosche, B., X. Z. Li, B. Hauer, A. Schmid and K. Buehler (2009). 'Microbial biofilms: a concept for industrial catalysis?' Trends in Biotechnology 27(11): 636-643.
Sala Cossich, E., C. R. Granhen Tavares and T. M. Kakuta Ravagnani (2002). 'Biosorption of chromium(III) by Sargassum sp. biomass.' Electronic Journal of Biotechnology 5: 6-7.
Salalha, W., J. Kuhn, Y. Dror and E. Zussman (2006). 'Encapsulation of bacteria and viruses in electrospun nanofibres.' Nanotechnology 17(18): 4675-4681.
Stie, M. B., M. Jones, H. O. Sørensen, J. Jacobsen, I. S. Chronakis and H. M. Nielsen (2019). 'Acids ‘generally recognized as safe’ affect morphology and biocompatibility of electrospun chitosan/polyethylene oxide nanofibers.' Carbohydrate Polymers 215: 253-262.
Suresh Kumar, K., H.-U. Dahms, E.-J. Won, J.-S. Lee and K.-H. Shin (2015). 'Microalgae – A promising tool for heavy metal remediation.' Ecotoxicology and Environmental Safety 113: 329-352.
Teo, W. E. and S. Ramakrishna (2006). 'A review on electrospinning design and nanofibre assemblies.' Nanotechnology 17(14): R89-R106.
Tran, H. N., S.-J. You, A. Hosseini-Bandegharaei and H.-P. Chao (2017). 'Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review.' Water Research 120: 88-116.
Tripathi, S., G. K. Mehrotra and P. K. Dutta (2009). 'Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications.' International Journal of Biological Macromolecules 45(4): 372-376.
Veleirinho, B., D. S. Coelho, P. F. Dias, M. Maraschin, R. Pinto, E. Cargnin-Ferreira, A. Peixoto, J. A. Souza, R. M. Ribeiro-do-Valle and J. A. Lopes-da-Silva (2014). 'Foreign body reaction associated with PET and PET/chitosan electrospun nanofibrous abdominal meshes.' PloS one 9(4): e95293-e95293.
Wan Ngah, W. S., C. S. Endud and R. Mayanar (2002). 'Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads.' Reactive and Functional Polymers 50(2): 181-190.
Wan Ngah, W. S., A. Kamari and Y. J. Koay (2004). 'Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads.' International Journal of Biological Macromolecules 34(3): 155-161.
Wang, J. and C. Chen (2009). 'Biosorbents for heavy metals removal and their future.' Biotechnology Advances 27(2): 195-226.
Xu, Y., S. Purton and F. Baganz (2013). 'Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana.' Bioresource Technology 129: 296-301.
Yarin, A. L. and E. Zussman (2004). 'Upward needleless electrospinning of multiple nanofibers.' Polymer 45(9): 2977-2980.
Zheng, H., Y. Du, J. Yu, R. Huang and L. Zhang (2001). 'Preparation and characterization of chitosan/poly(vinyl alcohol) blend fibers.' Journal of Applied Polymer Science 80(13): 2558-2565.
Zhou, W., J. He, S. Cui and W. Gao (2011). 'Studies of electrospun cellulose acetate nanofibrous membranes.' The Open Materials Science Journal 5(1).
Zussman, E. (2011). 'Encapsulation of cells within electrospun fibers.' Polymers for Advanced Technologies 22(3): 366-371.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60905-
dc.description.abstract近年來利用生物復育重金屬污染的研究日漸熱門,其中使用微藻做為吸附劑的研究也顯示自營生長的微藻具有去除水中重金屬之潛力,而使用材料固定生物體作為吸附劑的方式也蔚為風潮,雖生物體因固定於材料內部或表面,易降低其與污染物接觸頻率以及減少吸附位,造成固定化生物體去除污染物能力常低於懸浮態生物體,但固定化後生物體仍可保持活性、吸附能力並藉此降低系統空間需求、提高重複使用潛力、提高的環境耐受性、提高污染物回收潛力與更簡易的操作與維護等優點。
本研究主題為利用靜電紡絲技術製作具有固定化微藻功能之纖維膜,並藉此去除水中重金屬之污染。靜電紡絲纖維膜具有高比表面積、易改質、材料多樣等特性,因此優選出固定微藻的最佳方法有其重要性,經過三種固定微藻方法比較(夾層法、浸塗法、共紡法),並發現浸塗法較適合批次且無水壓下使用;夾層法需要給水壓力提供必要流速以維持微藻活性;共紡法因微藻需投入酸性靜電紡絲溶液中,因此不適合非嗜酸性的小球藻。
此外,本研究進一步評估出在浸塗法下的最佳化靜電紡絲溶液比例(殼聚醣:聚乙烯醇 = 60:40)與其操作參數的最佳條件;聚乙烯醇因具有水中溶解特性,因此採用浸泡法、噴覆法、乾燥皿法等三種戊二醛交聯方式進行比較,結果發現噴覆法無明顯交聯效果,浸泡法與乾燥皿法皆能有效交聯以降低水溶速度,但因為浸泡法需要大量使用到有毒戊二醛,故選用乾燥皿法做為交聯方法。殼聚醣因具有功能性氨基與羥基可做為固定微藻之吸附位,但會因為不同溶液酸鹼值而產生帶電性差異,本研究得出,溶液在pH=3、4、5、6、7下,面積12.56 cm2之纖維膜固定微藻之生物量分別為-2.6、9.3、29、19.3、9 mg,以pH = 5有最佳固定微藻效果,而重金屬吸附效果以pH=6較佳,並確認纖維膜在酸性溶液條件下,有較高的有機物溶解並可能與微藻表面吸附位結合而降低吸附效果,因此反而在pH = 6下固定微藻纖維膜具有最佳的重金屬去除效果,而如預期固定化微藻確實會導致吸附能力降低,在pH = 6條件下,單位微藻重量之重金屬吸附量從懸浮態之9.08 mg/g - Ni下降到固定化微藻之5.8 mg/g - Ni以及14.09 mg/g -Cu下降到10.54 mg/g -Cu,而因為交聯纖維膜吸附位可以提供負電物質良好去除效果,單位微藻重量之鉻(CrO72-)吸附量反而從懸浮態之4.26 mg/g提升到59.7 mg/g。
本研究成功利用靜電紡絲技術生產以殼聚醣為主要材料的纖維膜,其具有固定微藻效果,並能保持微藻活性以及去除重金屬能力。
zh_TW
dc.description.abstractIn recent years, bioremediation of heavy metals has attracted more and more attention, and studies using microalgae as an adsorbent have shown potential to remove heavy metals in contaminated water by autotrophic microalgae. Immobilization as one of important approaches to contain large amount of microalgae in smaller space, can not only maintain microalgal activities and adsorption capacity on heavy metals, but also reduce space requirements, increase reuse potential, improve environmental tolerance, and simplify operation and maintenance.
In this study, we successfully fabricated a fibrous membrane with immobilized microalgae on it by utilizing electrospinning technique to remove heavy metal in contaminated water. Fibrous membrane based on electrospinning technique has the characteristics of high specific surface area, ease of modification, various materials to choose, etc. Hence evaluating methods for immobilizing microalgae, such as interlayer method, dip-coating method and blending method and finding out the best one is necessary. Results indicated the interlayer method needs to provide flow rate to maintain microalgae activity, whereas the blending method is only suitable for acidophilic microalgae as the microalgae needs to be added to the acidic electrospinning solutions. The dip-coating method is more suitable for batch application. In addition, optimal ratio of the electrospinning solution (chitosan : polyvinyl alcohol = 60:40) has been observed, and optimal electrospinning of polyvinyl alcohol and chitosan have been evaluated, respectively. For polyvinyl alcohol, the soluble properties in water was addressed by three glutaraldehyde crosslinking methods, including immersion method, spraying method, and dry dish method. Results demonstrated the spraying method has no cross-linking effect, and both the immersion method and the dry-dish method can effectively cross-link to reduce water solubility. However, because of the large amount of toxic glutaraldehyde used in the immersion method, the dry-dish method was chosen instead as the cross-linking method. The amino and hydroxyl groups of chitosan can be used as adsorption sites for microalgae, but differences in surface potential depend on the pH of the solution. Therefore, the effect of pH on the immobilization of microalgae was tested respectively at solution pH = 3, 4, 5, 6, 7, and results showed the biomass of microalgae, which was successfully adsorbed on the 12.56 cm2 membrane was -2.6, 9.3, 29, 19.3, 9 mg, respectively, suggesting pH = 5 was the optimal condition for immobilization of microalgae. However, it is speculated that the acidic condition of the solution caused a slight dissolution of chitosan. The surface adsorption site of the microalgae may bind to the chitosan to reduce the adsorption effect. Therefore, instead of pH = 5, pH = 6 was observed to provide the best heavy metal removal effect. However, the adsorption capacity of microalgae to remove heavy metals after immobilization is lower than that of suspended microalgae. After the immobilization of microalgae at pH = 6, the adsorption capacity of microalgae for Ni and Cu decreased from 9.08 and 14.09 to 5.8 and 10.54 mg/g, separately. Although the immobilization of microalgae causes to lower adsorption capacity of microalgae, the membrane immobilized by microalgae provides adsorption sites for negatively charged ions due to the positively charged functional groups of the chitosan. The adsorption capacity of microalgae for Cr (CrO72-) significantly increased from 4.26 to 59.7 mg/g.
In this study, we first successfully constructed the microalgae/chitosan-based electrospun membrane by utilizing electrospinning technique to remove heavy metals, which can immobilize microalgae, maintain microalgal activities and remove heavy metals simultaneously. Nonetheless, further research will still be needed to improve the capacity of this microalgae/chitosan-based electrospun membrane on the removal of heavy metals.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:35:43Z (GMT). No. of bitstreams: 1
U0001-0107202022564800.pdf: 6176948 bytes, checksum: 4997631c4855b9e33dcdb934c192434a (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 I
致謝 III
摘要 V
Abstract VII
目錄 XI
圖目錄 XV
表目錄 XVIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
第二章 文獻回顧 5
2.1 微藻 5
2.2 重金屬與其整治 6
2.3 生物吸附機制 8
2.4 靜電紡絲 11
2.4.1 靜電紡絲基本原理 11
2.4.2 靜電紡絲基本裝置 12
2.4.3 靜電紡絲影響因素 14
2.5 靜電紡絲應用於固定細胞之研究現況 17
2.6 殼聚醣(Chitosan, CS) 21
2.7 聚乙烯醇(Polyvinyl alcohol, PVA) 23
2.8 綠色溶劑(Green solvent) 24
第三章 材料與方法 25
3.1 實驗藥品與設備 25
3.1.1 實驗藥品 25
3.1.2 實驗設備 27
3.2 實驗架構 30
3.3 藻類培養與生長狀態測定 32
3.3.1 純種藻種培養 32
3.3.2 藻類生長濃度之測定(分光光度計法) 35
3.3.3 藻類穩定期之混合液懸浮固體濃度(MLSS) 36
3.3.4 藻類細胞計數 37
3.4 藻類吸附重金屬實驗 38
3.4.1 藻類吸附重金屬批次實驗 38
3.4.2 等溫吸附模式與擬一二階反應動力學 40
3.5 靜電紡絲纖維膜實驗 42
3.5.1 靜定紡絲固定方法 42
3.5.3 靜電紡絲纖維膜交聯方法 46
3.5.4 形貌分析-掃描式電子顯微鏡(SEM) 47
3.5.5 形貌分析-白光雷射共軛焦顯微(Confocal) 48
3.5.6 材料分析-傅立葉轉換紅外線光譜分析法(FTIR) 48
3.6 微藻固定化實驗 49
3.7 固定化微藻纖維膜重金屬吸附實驗 50
3.8 固定化微藻纖維膜人工廢水去除實驗 50
第四章 結果與討論 51
4.1 小球藻生長曲線 51
4.2 懸浮態純藻吸重金屬批次實驗 52
4.2.1 鉻吸附表現 52
4.2.2 鎳吸附表現 53
4.2.3 銅吸附表現 54
4.2.4 等溫吸附模式 55
4.2.5 擬一階與擬二階動力模式 59
4.3 固定微藻方法與靜電紡絲參數優化 61
4.3.1 微藻固定方式選用 61
4.3.2 靜電紡絲參數最佳化 67
4.3.3 流變-黏度測試 70
4.3.4 戊二醛交聯效果測試 71
4.3.5 纖維表面電位測試 74
4.3.6 傅立葉轉換紅外線光譜分析法(FTIR) 75
4.3.7 白光雷射共軛焦顯微鏡 77
4.4 微藻固定效果與重金屬去除實驗 79
4.4.1 微藻固定效果 79
4.4.2 固定化微藻活性測試 82
4.4.3 固定微藻之纖維膜去除人工廢水之硝酸根測試 83
4.4.4 纖維膜去除重金屬測試 84
4.4.5 固定微藻之纖維膜去除重金屬測試 86
4.4.6 纖維膜水中溶解量測試 91
4.4.7 懸浮態與固定化微藻吸附表現比較 93
第五章 結論與建議 97
5.1 結論 97
5.2 建議 99
參考文獻 101
dc.language.isozh-TW
dc.title利用靜電紡絲技術固定微藻於殼聚醣纖維膜去除水中重金屬zh_TW
dc.titleImmobilizing Microalgae on Chitosan-based
Electrospun Membrane to Remove Heavy Metals
in Contaminated Water
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee侯嘉洪(Chia-Hung Hou),郭獻文(Hsion-Wen Kuo),林居慶(Chu-Ching Lin)
dc.subject.keyword微藻,小球藻,靜電紡絲,殼聚醣,聚乙烯醇,固定化,zh_TW
dc.subject.keywordMicroalgae,Chlorella,Electrospinning,Chitosan,Polyvinyl Alcohol,Immobilization,Heavy Metal,Adsorption,en
dc.relation.page108
dc.identifier.doi10.6342/NTU202001255
dc.rights.note有償授權
dc.date.accepted2020-07-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0107202022564800.pdf
  目前未授權公開取用
6.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved