請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60896
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李芳仁 | |
dc.contributor.author | Shih-Feng Huang | en |
dc.contributor.author | 黃士峯 | zh_TW |
dc.date.accessioned | 2021-06-16T10:35:17Z | - |
dc.date.available | 2018-08-20 | |
dc.date.copyright | 2013-09-24 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-14 | |
dc.identifier.citation | Bandziulis RJ, Swanson MS, Dreyfuss G. (1989). RNA-binding proteins as developmental regulators. Genes Dev. 3, 431-437.
Bardwell L. (2005). A walk-through of the yeast mating pheromone response pathway. Peptides. 26, 339-350. Barrett L, Orlova M, Maziarz M, Kuchin S. (2012). Protein kinase A contributes to the negative control of Snf1 protein kinase in Saccharomyces cerevisiae. Eukaryot Cell. 11, 119-128. Broek D, Samiy N, Fasano O, Fujiyama A, Tamanoi F, Northup J, Wigler M. (1985). Differential activation of yeast adenylate cyclase by wild-type and mutant RAS proteins. Cell. 41, 763-769. Bruckner S, Kohler T, Braus GH, Heise B, Bolte M, Mosch HU. (2004). Differential regulation of Tec1 by Fus3 and Kss1 confers signaling specificity in yeast development. Curr Genet. 46, 331-342. Bruckner S, Mosch HU. (2012). Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev. 36, 25-58. Bumgarner SL, Dowell RD, Grisafi P, Gifford DK, Fink GR. (2009). Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc Natl Acad Sci U S A. 106, 18321-18326. Bumgarner SL, Neuert G, Voight BF, Symbor-Nagrabska A, Grisafi P, van Oudenaarden A, Fink GR. (2012). Single-cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment. Mol Cell. 45, 470-482. Buu LM, Jang LT, Lee FJ. (2004). The yeast RNA-binding protein Rbp1p modifies the stability of mitochondrial porin mRNA. J Biol Chem. 279, 453-462. Chandarlapaty S, Errede B. (1998). Ash1, a daughter cell-specific protein, is required for pseudohyphal growth of Saccharomyces cerevisiae. Mol Cell Biol. 18, 2884-2891. Chang LC, Lee FJ. (2012). The RNA helicase Dhh1p cooperates with Rbp1p to promote porin mRNA decay via its non-conserved C-terminal domain. Nucleic Acids Res. 40, 1331-1344. Chou S, Lane S, Liu H. (2006). Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae. Mol Cell Biol. 26, 4794-4805. Coller J, Parker R. (2004). Eukaryotic mRNA decapping. Annu Rev Biochem.73, 861-890. Conlan RS, Tzamarias D. (2001). Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol. 309, 1007-1015. Cook JG, Bardwell L, Thorner J. (1997). Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature. 390, 85-88. Costanzo MC, Crawford ME, Hirschman JE, Kranz JE, Olsen P, Robertson LS, Skrzypek MS, Braun BR, Hopkins KL, Kondu P, Lengieza C, Lew-Smith JE, Tillberg M, Garrels JI. (2001). YPD, PombePD and WormPD: model organism volumes of the BioKnowledge library, an integrated resource for protein information. Nucleic Acids Res. 29, 75-79. DeAngelo DJ, DeFalco J, Rybacki L, Childs G. (1995). The embryonic enhancer-binding protein SSAP contains a novel DNA-binding domain which has homology to several RNA-binding proteins. Mol Cell Biol. 15, 1254-1264. Dranginis AM, Rauceo JM, Coronado JE, Lipke PN. (2007). A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev. 71, 282-294. Estruch F, Carlson M. (1990). Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defective in the SNF1 protein kinase. Nucleic Acids Res. 18, 6959-6964. Fribourg S, Gatfield D, Izaurralde E, Conti E. (2003). A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat Struct Biol. 10, 433-439. Gagiano M, van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS. (1999). Msn1p/Mss10p, Mss11p and Muc1p/Flo11p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Microbiol. 31, 103-116. Gagiano M, Bester M, van Dyk D, Franken J, Bauer FF, Pretorius IS. (2003). Mss11p is a transcription factor regulating pseudohyphal differentiation, invasive growth and starch metabolism in Saccharomyces cerevisiae in response to nutrient availability. Mol Microbiol. 47, 119-134. Gilbert WV, Zhou K, Butler TK, Doudna JA. (2007). Cap-independent translation is required for starvation-induced differentiation in yeast. Science. 317, 1224-1227. Gietz RD, Sugino A. (1998). New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 74, 527-534. Gimeno CJ, Fink GR. (1994). Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol. 14, 2100-2112. Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF. (2008). Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol. 74, 6041-6052. Gavrias V, Andrianopoulos A, Gimeno CJ, Timberlake WE. Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol Microbiol. 1996 Mar;19(6):1255-1263. Guo B, Styles CA, Feng Q, Fink GR. (2000). A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A. 97, 12158-12163. Heise B, van der Felden J, Kern S, Malcher M, Bruckner S, Mosch HU. (2010). The TEA transcription factor Tec1 confers promoter-specific gene regulation by Ste12-dependent and -independent mechanisms. Eukaryot Cell. 9, 514-531. Herrick D, Parker R, Jacobson A. (1990). Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol Cell Biol. 10, 2269-2284. Jang LT, Buu LM, Lee FJ. (2006). Determinants of Rbp1p localization in specific cytoplasmic mRNA-processing foci, P-bodies. J Biol Chem. 281, 29379-29390. Jiang R, Carlson M. (1997). The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol Cell Biol. 17, 2099-2106. Kaiser, C., S. Michaelis, and A. Mitchell. (1994). Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. Kim TS, Kim HY, Yoon JH, Kang HS. (2004). Recruitment of the Swi/Snf complex by Ste12-Tec1 promotes Flo8-Mss11-mediated activation of STA1 expression. Mol Cell Biol. 24, 9542-9556. Kraakman L, Lemaire K, Ma P, Teunissen AW, Donaton MC, Van Dijck P, Winderickx J, de Winde JH, Thevelein JM. (1999). A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol. 32, 1002-1012. Kuchin S, Vyas VK, Carlson M. (2002). Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol. 22, 3994-4000. Lee FJ, Moss J. (1993). An RNA-binding protein gene (RBP1) of Saccharomyces cerevisiae encodes a putative glucose-repressible protein containing two RNA recognition motifs. J Biol Chem. 268, 15080-15087. Jin R, Dobry CJ, McCown PJ, Kumar A. (2008). Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression. Mol Biol Cell. 19, 284-296. Liu H, Styles CA, Fink GR. (1993). Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science. 262, 1741-1744. Liu H, Styles CA, Fink GR. (1996). Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics. 144, 967-978. Lo WS, Dranginis AM. (1998). The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell. 9, 161-171. Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 14, 953-961. Lorenz MC, Heitman J. (1998). Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains. Genetics. 150, 1443-1457. Malcher M, Schladebeck S, Mosch HU. (2011). The Yak1 protein kinase lies at the center of a regulatory cascade affecting adhesive growth and stress resistance in Saccharomyces cerevisiae. Genetics. 187, 717-730. Martineau CN, Melki R, Kabani M. (2010). Swa2p-dependent clathrin dynamics is critical for Flo11p processing and 'Mat' formation in the yeast Saccharomyces cerevisiae. FEBS Lett. 584, 1149-1155. Mosch HU, Roberts RL, Fink GR. (1996). Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 93, 5352-5356. Pan X, Heitman J. (1999). Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol. 19, 4874-4887. Pan X, Heitman J. (2000). Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol Cell Biol. 20, 8364-8372. Park YU, Hur H, Ka M, Kim J. (2006). Identification of translational regulation target genes during filamentous growth in Saccharomyces cerevisiae: regulatory role of Caf20 and Dhh1. Eukaryot Cell. 5, 2120-2127. Paul J. Cullen, George F. Sprague, Jr. (2000). Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A. 97, 13619-13624. Pitoniak A, Birkaya B, Dionne HM, Vadaie N, Cullen PJ. (2009). The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response. Mol Biol Cell. 20, 3101-3114. Roberts RL, Fink GR. (1994). Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 15, 2974-2985. Robertson LS, Fink GR. (1998). The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci U S A. 95, 13783-13787. Robertson LS, Causton HC, Young RA, Fink GR. (2000). The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci U S A. 97, 5984-5988. Rubenstein EM, McCartney RR, Zhang C, Shokat KM, Shirra MK, Arndt KM, Schmidt MC. (2008). Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J Biol Chem. 283, 222-230. Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM, Grunstein M. (1996). HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci U S A. 93, 14503-14508. Rupp S, Summers E, Lo HJ, Madhani H, Fink G. (1999). MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 18, 1257-1269. Schroder K, Graumann P, Schnuchel A, Holak TA, Marahiel MA. (1995). Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Mol Microbiol. 16, 699-708. Sherman F, Fink GR, Hicks JB. (1986). Methods in Yeast Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. Sheth U, Parker R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science. 300, 805-808. Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD, Jansen A, Prevost MC, Latge JP, Fink GR, Foster KR, Verstrepen KJ. (2008). FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell. 135, 726-737. Spingola M, Ares M Jr. (2000). A yeast intronic splicing enhancer and Nam8p are required for Mer1p-activated splicing. Mol Cell. 6, 329-338. Tamaki H. (2007). Glucose-stimulated cAMP-protein kinase A pathway in yeast Saccharomyces cerevisiae. J Biosci Bioeng. 104, 245-250. Tucker M, Parker R. (2000). Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae. Annu Rev Biochem. 69, 571-595. Van de Velde S, Thevelein JM. (2008). Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae. Eukaryot Cell. 7, 286-293. van Dyk D, Hansson G, Pretorius IS, Bauer FF. (2003). Cellular differentiation in response to nutrient availability: The repressor of meiosis, Rme1p, positively regulates invasive growth in Saccharomyces cerevisiae. Genetics. 165, 1045-1058. van Dyk D, Pretorius IS, Bauer FF. (2005). Mss11p is a central element of the regulatory network that controls FLO11 expression and invasive growth in Saccharomyces cerevisiae. Genetics. 169, 91-106. Vasudevan S, Peltz SW. (2001). Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol Cell. 7, 1191-1200. Vernet T, Dignard D, Thomas DY. (1987). A family of yeast expression vectors containing the phage f1 intergenic region. Gene. 52, 225-233. Verstrepen KJ, Klis FM. (2006). Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol. 60, 5-15. Vinod PK, Venkatesh KV. (2007). Specificity of MAPK signaling towards FLO11 expression is established by crosstalk from cAMP pathway. Syst Synth Biol. 1, 99-108. Vitali J, Ding J, Jiang J, Zhang Y, Krainer AR, Xu RM. (2002). Correlated alternative side chain conformations in the RNA-recognition motif of heterogeneous nuclear ribonucleoprotein A1. Nucleic Acids Res. 30, 1531-1538. Vyas VK, Kuchin S, Berkey CD, Carlson M. (2003). Snf1 kinases with different beta-subunit isoforms play distinct roles in regulating haploid invasive growth. Mol Cell Biol. 23, 1341-1348. Wang Y, Liu CL, Storey JD, Tibshirani RJ, Herschlag D, Brown PO. (2002). Precision and functional specificity in mRNA decay. Proc Natl Acad Sci U S A. 99, 5860-5865. Yang XJ, Seto E. (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol. 9, 206-218. Yuan YL, Fields S. (1991). Properties of the DNA-binding domain of the Saccharomyces cerevisiae STE12 protein. Mol Cell Biol. 11, 5910-5918. Zeitlinger J, Simon I, Harbison CT, Hannett NM, Volkert TL, Fink GR, Young RA. (2003). Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell. 113, 395-404. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60896 | - |
dc.description.abstract | 酵母菌核醣核酸結合蛋白(Rbp1p)最初被定義為一負向調控的生長因子。在其結構上包含三個核醣核酸識別基序(RRM)和兩個富含麩氨酸區域,並且在碳端具有一個富含天門冬氨酸、甲硫胺酸和脯胺酸的區域。我們實驗室已發現當過度表現RRM突變株時,會誘導酵母菌產生過度附著(hyper-adhesion)的生長現象,此為一種絲狀生長(filamentous growth)現象。而絮凝因子(Flo11p)已被知道是調控此過度附著現象的關鍵因子。最近我們發現當S1278b基因背景下的酵母菌之RBP1基因被剃除會促使FLO11信使RNA(mRNA)增加,導致洋菜膠附著(agar-adhesion)、入侵(invasion)及細胞伸長(cell elongation)的現象產生。在本篇研究中,我們想要探討Rbp1p是如何去調控FLO11的表現。首先,我們先驗證在rbp1突變株中FLO11的信使RNA及蛋白質確實都有增加。然後,利用北方點墨法證實RBP1基因剔除並不會顯著延長FLO11信使RNA的半衰期,反而會促進FLO11基因的轉錄。我們藉由剃除一些涉及洋菜膠附著表現的候選基因之方式去尋找哪些基因可能參與Rbp1p介導的絲狀生長表現。除了Flo8p及Ste12p之外,我們發現rbp1 mss11突變株會失去rbp1誘導的過度附著生長及FLO11高表現的現象。此外,我們也證實剃除RBP1可以抑制ICR1的表現,其為一種非編碼RNA(ncRNA)並已知其表現會抑制FLO11的轉錄。在本篇研究中,我們也想探討過度表達Rbp1p-rrm3的突變株如何誘發FLO11的表現。西方點墨法及北方點墨法的分析都顯示過度表達Rbp1p-rrm3會促使FLO11的轉錄。此外,在BY4741基因背景下分別剔除SNF1及BCY1基因都會減弱Rbp1p-rrm3所引發的過度附著生長及FLO11高表現的現象。然而,還有許多Rbp1p及Rbp1p-rrm3調控FLO11轉錄的詳細分子機制仍需要再進一步研究。 | zh_TW |
dc.description.abstract | The RNA-binding protein, Rbp1p was first identified as a negative growth regulator in Saccharomyces cerevisiae. Structure of Rbp1p contains three RNA-recognition motifs (RRMs), two glutamine-rich regions, and asparagine-methionine-proline-rich (NMP-rich) region in the C-terminus. In our lab, we had found that over-expressing Rbp1p-RRM mutants into yeast induced a hyper-adhesion growth phenotype, a filamentous growth phenotype. Flo11p has been known as the key factor in hyper-adhesion phenotype. Recently, we found that deletion of RBP1 enhanced FLO11 mRNA level resulting in agar-adhesion, invasion, and cell elongation in S1278b strain. In this study, we went to investigate how Rbp1p regulates the FLO11 expression. Firstly, we showed that FLO11 mRNA and Flo11p exactly increased in RBP1-deleted strain. Then, Northern blot analyses indicated that deletion of RBP1 did not significantly prolong the half-life of FLO11 mRNA, but enhanced the FLO11 transcription. To study which genes would involve in Rbp1p-mediated filamentous growth, we disrupted several candidate genes involving in adhesion phenotype. In addition to Flo8p and Ste12p, we further found that rbp1 mss11 double mutant lost the rbp1-induced hyper-adhesion growth phenotype and high FLO11 expression. Moreover, we also found that the deletion of RBP1 could suppress the level of ICR1, which is the ncRNA that represses FLO11 transcription. Here, we also asked how over-expression of Rbp1p-rrm3 mutant induces FLO11 expression. Western blot and Northern blot analysis showed that over-expressing the Rbp1p-rrm3 mutant activated the FLO11 transcription. Furthermore, the deletion of SNF1 or BCY1 decreased the Rbp1p-rrm3-induced hyper-adhesion and high FLO11 expression in BY4741. Thus, the more detail molecular mechanism of FLO11 transcription regulated by Rbp1p or Rbp1p-rrm3 is still need to be further investigated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:35:17Z (GMT). No. of bitstreams: 1 ntu-102-R00448006-1.pdf: 3290049 bytes, checksum: bf62f0a8d5d0fe4cba85008bb0a71ec5 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract III Table of Contents V Introduction 1 Materials and Methods 13 Results 23 Part I. To investigate how Rbp1p regulates the FLO11 expression 23 Part II. To study how over-expression of Rbp1p-rrm3 mutant induces FLO11 expression 32 Discussion 36 Figures Figure 1. Construct of integrated Rbp1p and Rbp1p-rrm2. 41 Figure 2. Expression of integrated Rbp1p restores rbp1-induced hyper- adhesion. 42 Figure 3. Deletion of RBP1 gene enhances FLO11 mRNA level both in S1278b and YTC345 strain in response to glucose limitation. 43 Figure 4. Flo11p increases in the rbp1 mutant compared to the wild-type strain. 44 Figure 5. Deletion of RBP1 gene does not significantly prolong the half-life of FLO11 mRNA. 45 Figure 6. Deletion of RBP1 gene promotes the activity of FLO11 promoter. 46 Figure 7. Expression of Rbp1p restores rbp1-induced high activity of FLO11 promoter. 47 Figure 8. Mga1p and Swi5p are not required for rbp1-induced hyper-adhesive growth phenotype. 49 Figure 9. The rbp1-iduced hyper-adhesive growth phenotype is not dependent of Snf1p and Gpr1p. 50 Figure 10. The rbp1-iduced hyper-adhesive growth phenotype depends on Flo8p and Ste12p, but not their kinases. 51 Figure 11. Deletion of MSS11 gene loses rbp1-induced hyper-adhesion and high FLO11 expression. 53 Figure 12. Rbp1p does not significantly affect the mRNA levels of FLO8, STE12 and MSS11. 54 Figure 13. Deletion of RBP1 gene down-regulates the level of ICR1 transcribed upstream of FLO11. 55 Figure 14. Over-expression of Rbp1p-rrm3 mutant induces hyper-adhesive growth phenotype in BY4741 strain. 56 Figure 15. Over-expression of Rbp1p-rrm3 mutant enhances FLO11 expression. 57 Figure 16. Hms1p is not required for Rbp1p-rrm3 mutant-induced hyper-adhesive growth phenotype. 58 Figure 17. Over-expression of Rbp1p-rrm3 promotes FLO11 transcription. 59 Figure 18. The transcription factors Flo8p, Ste12p and Mss11p are not required for Rbp1p-rrm3 mutant-induced hyper-adhesive growth phenotype. 60 Figure 19. Deletion of BCY1 gene reduces Rbp1p-rrm3 mutant-induced hyper- adhesion and FLO11 expression. 62 Figure 20. Deletion of SNF1 gene suppresses Rbp1p-rrm3 mutant-induced hyper- adhesion and FLO11 expression. 63 Appendixes Appendix 1. The complex regulation of the FLO11 promoter by conventional and epigenetic mechanisms. 64 Appendix 2. Model for transcriptional variegation at the FLO11 locus involving a toggle between the ncRNAs ICR1 and PWR1. 65 Tables Table 1. Yeast strains used in this study 66 Table 2. Primers used in this study 69 Table 3. Plasmids used in this study 75 Table 4. Antibodies used in this study 76 Table 5. The expression of FLO11 transcription-associated genes in S1278b 77 Reference 82 | |
dc.language.iso | en | |
dc.title | 探討酵母菌核醣核酸蛋白Rbp1p對絲狀生長中絮凝因子FLO11表現之調控 | zh_TW |
dc.title | Characterization of Rbp1p-mediated FLO11 expression in yeast filamentous growth | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林敬哲,羅?升,鄧述諄 | |
dc.subject.keyword | 核醣核酸結合蛋白,絲狀生長,絮凝因子,轉錄, | zh_TW |
dc.subject.keyword | RNA-binding protein,filamentous growth,FLO11,transcription, | en |
dc.relation.page | 89 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 3.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。