Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60890
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于天立
dc.contributor.authorChung-Yu Shaoen
dc.contributor.author邵中昱zh_TW
dc.date.accessioned2021-06-16T10:34:59Z-
dc.date.available2013-08-17
dc.date.copyright2013-08-17
dc.date.issued2013
dc.date.submitted2013-08-14
dc.identifier.citationBibliography
[1] H. Bai, D. OuYang, X. Li, L. He, and H. Yu. Max-min ant system on gpu with
cuda. In Innovative Computing, Information and Control (ICICIC), 2009 Fourth
International Conference on, pages 801–804. IEEE, 2009.
[2] S. Baluja. Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical report,
Carnegie Mellon University, Pittsburgh, PA, 1994.
[3] E. Cant’u-Paz. Efficient and accurate parallel genetic algorithms. Kluwer Academic
Publishers, Boston, MA, 2000.
[4] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.
[5] K. Fan, T. Yu, and J. Lee. Interaction detection by nfe estimation: A practical view
of building blocks. In Proceedings of the 13th annual conference companion on
Genetic and evolutionary computation, pages 71–72. ACM, 2011.
[6] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA, 1989.
[7] D. E. Goldberg. The design of innovation: Lessons from and for competent genetic
algorithms. Kluwer Academic Publishers, Boston, MA, 2002.
[8] D. E. Goldberg and S. Voessner. Optimizing global-local search hybrids. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-1999),
pages 220–228, 1999.
[9] C. Grosan, A. Abraham, and H. Ishibuchi. Hybrid evolutionary algorithms. Springer
Publishing Company, Incorporated, 2007.
[10] S. Harding and W. Banzhaf. Distributed genetic programming on GPUs using
CUDA. In Workshop on Parallel Architectures and Bioinspired Algorithms, Raleigh,
USA, 2009.
[11] G. R. Harik, F. G. Lobo, and K. Sastry. Linkage Learning via Probabilistic Modeling
in the Extended Compact Genetic Algorithm (ECGA). Springer, 2006.
[12] J. H. Holland. Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press, 1975.
[13] P. Kr‥omer, V. Sn’asel, J. Platos, and A. Abraham. Many-threaded implementation of
differential evolution for the cuda platform. Proceedings of the 13th annual conference on Genetic and evolutionary computation, pages 1595–1602, 2011.
[14] P. Larra˜naga and J. A. Lozano, editors. Estimation of Distribution Algorithms: A
New Tool for Evolutionary Computation. Kluwer Academic Publishers, Boston,
MA, 2002.
[15] F. Lobo, K. Sastry, and G. Harik. Extended compact genetic algorithm in C++: Version 1.1. IlliGAL Report No. 2006012, University of Illinois at Urbana-Champaign,
2006.
[16] A. Mendiburu, J. Miguel-Alonso, and J. A. Lozano. Implementation and performance evaluation of a parallelization of estimation of bayesian network algorithms.
Parallel Processing Letters, 16(1):133–148, 2006.
[17] H. M‥uhlenbein and G. Paas. From recombination of genes to the estimation of
distributions I. Binary parameters. In Parallel Problem Solving from Nature, pages
178–187. Springer-Verlag, 1996.
[18] A. Munawar, M. Wahib, M. Munetomo, and K. Akama. Hybrid of genetic algorithm
and local search to solve max-sat problem using nvidia cuda framework. Genetic
Programming and Evolvable Machines, 10(4):391–415, 2009.
[19] A. Munawar, M. Wahib, M. Munetomo, and K. Akama. Theoretical and empirical
analysis of a gpu based parallel bayesian optimization algorithm. In Parallel and
Distributed Computing, Applications and Technologies, 2009 International Conference on, pages 457–462. IEEE, 2009.
[20] L. Mussi, F. Daolio, and S. Cagnoni. Evaluation of parallel particle swarm optimization algorithms within the CUDA
T M
architecture. Information Sciences,
181(20):4642–4657, 2011.
[21] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming
with CUDA. Queue, 6(2):40–53, 2008.
[22] C. Nvidia. C best practices guide. NVIDIA, Santa Clara, CA, 2012.
[23] C. Nvidia. CUDA C Programming Guide 4.2. NVIDIA, Santa Clara, CA, 2012.
[24] J. Oˇcen’aˇsek and J. Schwarz. The parallel bayesian optimization algorithm. The State
of the Art in Computational Intelligence, pages 61–67, 2000.
[25] J. Oˇcen’aˇsek and J. Schwarz. The distributed bayesian optimization algorithm for
combinatorial optimization. In K. C. Giannakoglou, D. T. Tsahalis, J. P’eriaux,
K. D. Papailiou, and T. Fogarty, editors, Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pages 115–120, Athens,
Greece, 2001. International Center for Numerical Methods in Engineering (Cmine).
[26] J. Oˇcen’aˇsek, J. Schwarz, and M. Pelikan. Design of multithreaded estimation of distribution algorithms. In E. Cant’u-Paz, J. A. Foster, K. Deb, D. Davis, R. Roy, U.-M.
O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener,
D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowsland, N. Jonoska, and J. Miller,
editors, Genetic and Evolutionary Computation – GECCO-2003, volume 2724 of
LNCS, pages 1247–1258, Chicago, 12-16 July 2003. Springer-Verlag.
[27] M. Pelikan, D. E. Goldberg, and E. Cant’u-Paz. BOA: The Bayesian optimization
algorithm. Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-1999), I:525–532, 1999.
[28] K. Sastry. Evaluation-relaxation schemes for genetic and evolutionary algorithms.
Master thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 2002.
[29] K. Sastry, M. Pelikan, and D. E. Goldberg. Efficiency enhancement of genetic algorithms via building-block-wise fitness estimation. Proceedings of the IEEE Conference on Evolutionary Computation, pages 720–727, 2004.
[30] D. Thierens. Scalability problems of simple genetic algorithms. Evolutionary computation, 7(4):331–352, 1999.
[31] A. Verma, X. Llor`a, S. Venkataraman, D. E. Goldberg, and R. H. Campbell. Scaling
eCGA model building via data-intensive computing. Urbana, 51:61801, 2010.
[32] P. Vidal and E. Alba. Cellular genetic algorithm on graphic processing units. Nature
Inspired Cooperative Strategies for Optimization (NICSO 2010), pages 223–232,
2010.
[33] T.-L. Yu, K. Sastry, D. E. Goldberg, and M. Pelikan. Population sizing for entropybased model building in discrete estimation of distribution algorithms. Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2007), pages
601–608, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60890-
dc.description.abstract為了提供電動遊戲所需要的即時、高畫質的3D立體繪圖,圖形
處理器在 過去二十年進步成擁有強大的運算能力的處理器。自從輝
達(NVIDIA)釋出 統一計算架構(CUDA)之後, 圖形處理器也成為可以在
更廣泛的用途上 提供平行計算並促進與CPU協同運算的裝置。 圖形處
理器已經在各種領域平行化了大量的可規模化的應用程式。 因為演化
式計算具有平行的本質, 平行化一直是一種直覺上可以增進效率的
方式。 然而將分佈估計演算法(EDA)運用在圖形處理器上的研究並不
多。
在這篇論文裡我們提出了兩種在CUDA上能夠加速擴展的 緊湊型基
因遺傳演算法(ECGA)的模型建立的實作方式。 第一個實作方式與原
本的ECGA在演算法上完全一致。 第二種實作修改了模型建立的演算
法,透過犧牲模型建立的精準度,獲得了 更高的加速。在實驗中,第
一個實作相對於基準的實作在一個長度為550 並且子問題長度為5的陷
阱問題上加速了大約374 倍。第二個 實作方式在相同的問題上加速了
大約531 倍。這兩種實作法 在一張Tesla C2050的圖形顯示卡上可以規
模化到長度為9800的陷阱問題。
zh_TW
dc.description.abstractDue to the demand for realtime, high-defination 3D graphics in video
game, graphic processing unit (GPU) has advanced to have tremendous computational power in the past two decades. Since NVIDIA released the compute unified device architecture (CUDA), GPU has become a general parallel computing device that facilitates heterogeneous computing between CPU
and GPU. GPU has enabled lots of scalable parallel programs in a wide range
of fields and parallelization is a straightforward approach to enhance the efficiency for evolutionary computation due to its inherently parallel nature.
However, parallelization of model building for EDA on GPU is rarely studied.
In this thesis, we propose two implementations on CUDA to speed up the
model building in the extended compact genetic algorithm (ECGA). The first
implementation is algorithmically identical to original ECGA. Aiming at a
greater speed boost, the second implementation modifies the model building.
It slightly decreases the accuracy of models in exchange for more speedup.
Empirically, the first implementation achieves a speedup of roughly 374 to
the baseline on 550-bit trap problem with order 5, and the second implementation achieves a speedup of roughly 531 to the baseline on the same problem.
Finally, both of our implementations scale up to 9,800-bit trap problem with
order 5 on one single Tesla C2050 GPU card.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:34:59Z (GMT). No. of bitstreams: 1
ntu-102-R00921046-1.pdf: 3056921 bytes, checksum: 4f733148320b5a6b0101f43c6a6ace7c (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsContents
口試委員會審定書 i
Acknowledgments ii
致謝 iii
Abstract iv
中文摘要 v
1 Introduction 1
2 GPU and CUDA 4
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 CUDA Programming Model . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Design Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Simple GAs, EDAs and ECGA 10
3.1 Simple Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Estimation of Distribution Algorithms . . . . . . . . . . . . . . . . . . . 11
3.3 Extended Compact Genetic Algorithms . . . . . . . . . . . . . . . . . . 12
4 Related Work 16
5 CUDA-based ECGA 17
5.1 A Table-look-up Method to Speed Up Counting Distribution . . . . . . . 17
5.2 gECGA: CUDA-based Implementation . . . . . . . . . . . . . . . . . . 18
5.2.1 Cache and model structure . . . . . . . . . . . . . . . . . . . . . 19
5.2.2 Memory space allocation . . . . . . . . . . . . . . . . . . . . . . 20
5.2.3 Tasks allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.4 Update cache and model . . . . . . . . . . . . . . . . . . . . . . 24
5.3 GM Search: The Modified Model-searching Algorithm . . . . . . . . . . 24
6 Experiments 26
6.1 Hardware Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 General Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Speedups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.5 Experiments of GM Search . . . . . . . . . . . . . . . . . . . . . . . . . 31
vi
7 Conclusion 38
Bibliography 39
dc.language.isoen
dc.subject模型建造zh_TW
dc.subject統一計算架構zh_TW
dc.subject圖形處理器zh_TW
dc.subject分佈估計演算法zh_TW
dc.subject緊湊型基因遺傳演算法zh_TW
dc.subject效率增進zh_TW
dc.subjectEfficiency Enhancemenen
dc.subjectEstimation of Distribution Algorithmsen
dc.subjectECGAen
dc.subjectModel Buildingen
dc.subjectCUDAen
dc.subjectGPUen
dc.title在CUDA平台上加速ECGA的模型建造zh_TW
dc.titleSpeeding Up Model Building for ECGA on CUDA Platformen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張時中,陳穎平
dc.subject.keyword統一計算架構,圖形處理器,分佈估計演算法,緊湊型基因遺傳演算法,模型建造,效率增進,zh_TW
dc.subject.keywordCUDA,GPU,Estimation of Distribution Algorithms,ECGA,Model Building,Efficiency Enhancemen,en
dc.relation.page41
dc.rights.note有償授權
dc.date.accepted2013-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved