Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60888
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖婉君(Wanjiun Liao)
dc.contributor.authorPo-Han Huangen
dc.contributor.author黃柏翰zh_TW
dc.date.accessioned2021-06-16T10:34:53Z-
dc.date.available2018-08-28
dc.date.copyright2013-08-28
dc.date.issued2013
dc.date.submitted2013-08-14
dc.identifier.citation[1] Z. Hasan, H. Boostanimehr, and V. K. Bhargava, “Green cellular networks: a survey, some research issues and challenges,” IEEE Comm. Surveys & Tutorials, vol.13, no.4, pp. 524-540, 2011.
[2] Cisco visual networking index: Global mobile data traffic forecast update, 2011-2016, Feb. 2012. [Online]. Available: http://www.cisco.com/en/US/solutions /collateral/ns341/ns525/ns537/ns705/ns827/white paper c11-520862.pdf.
[3] M.A. Marsan, L. Chiaraviglio, D. Ciullo, and M. Meo, “Optimal energy savings in cellular access networks,” Proc. IEEE ICC 2009 Communications Workshops, June 2009.
[4] S. Bhaumik, G. Narlikar, S. Chattopadhyay, and S. Kanugovi. “Breathe to stay cool: adjusting cell sizes to reduce energy consumption.” Proc. ACM SIGCOMM workshop on Green networking (Green Networking '10), Miami, Dec. 2010.
[5] Z. Niu, Y. Wu, and Z. Yang, “Cell zooming for cost-efficient green cellular networks,” IEEE Communication Magazine, vol. 48, no. 11, pp. 74-79, Nov. 2010.
[6] 3GPP 36.927, “Evolved universal terrestrial radio access (E-UTRA); potential solutions for energy saving for E-UTRAN,” 2012.
[7] K. J. Ray Liu, A. K. Sadek, W. Su, and A. Kwasinski, Cooperative Communication and Networking, Cambridge University Press, 2009.
[8] T.-Y. Wu, G.-W. Lin, P.-H. Huang, and W. Liao, “A distributed cooperation strategy in cognitive radio networks,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communication (PIMRC) 2013, London, UK, Sept. 2013
[9] S.-C. Wang and W. Liao, “CodedCM: cooperative multicasting for scalable video in wireless networks,” Proc. IEEE GLOBECOM 2011, Houston, Texas, USA, Nov. 2011
[10] IEEE 802.16j-06/026r4, P802.16j Baseline Document.
[11] G. Jakllari, S. V. Krishnamurthy, M. Faloutsos, P. V. Krishnamurthy, and O. Ercetin, 'A cross-layer framework for exploiting virtual MISO links in mobile ad hoc networks,' IEEE Transactions on Mobile Computing, vol. 6, no. 6, pp. 579-594, June 2007.
[12] 3GPP 36.819, “Coordinated multi-point operation for LTE physical layer aspects,” 2012.
[13] H. Taoka et al., “MIMO and CoMP in LTE-Advanced” NTT DOCOMO Technical Journal, Vol.12, No.2, 2011.
[14] L. Suarez, L. Nuaymi, and J.-M. Bonnin, “Analysis of the overall energy savings achieved by green cell-breathing mechanisms,” Proc. Sustainable Internet and ICT for Sustainability (SustainIT) 2012, Pisa, Italy, Oct. 2012.
[15] P.-H. Huang, P.-H. Chiang, and W. Liao, “Coverage and capacity aware cell scaling in green cellular networks,” Proc. IEEE GLOBECOM 2013, Atlanta, Georgia, Dec. 2013
[16] L. Sakar, S. E. Elayoubi, L. Rong, and T. Chahed, “Capacity and energy efficiency of picocell deployment in LTE-A networks,” Proc. IEEE VTC-Spring 2011, Budapest, Hungary, May 2011.
[17] D. Cao, S. Zhou, C. Zhang, and Z. Niu, “Energy saving performance comparison of coordinated multi-point transmission and wireless relaying,” Proc. IEEE GLOBECOM 2010, Miami, Dec.2010.
[18] S. Q. Han, C. Y. Yang, G. Wang, and M. Lei, “On the energy efficiency of base station sleeping with multicell cooperative transmission,” Proc. IEEE International Symposium on Personal, Indoor and Mobile Radio Communication (PIMRC) 2011, Toronto, Canada, Sep. 2011.
[19] M. Herlich, and H. Karl, “Reducing power consumption of mobile access networks with cooperation,” Proc. 2nd Int’l Conf. Energy-Efficient Computing and Networking, New York City, NY, May 2011.
[20] Z. Liu, S. Zhou, Y. Hua, Q. Zhang, and D. Cao, “Energy-aware network planning for wireless cellular system with inter-cell cooperation,” IEEE Transactions on Wireless Communications, vol. 11, no. 4, pp.1412-1423, April 2012.
[21] Q. Zhang, C. Yang, H. Haas, and J. Thompson, “Energy-efficient cooperative downlink transmission with antenna and BS closing,” Proc. IEEE ICC 2013, Budapest, Hungary, Jun. 2013
[22] W. Guo and T. O’Farrell, “Dynamic cell expansion with self-organizing cooperation,” IEEE Journal on Selected Area in Communications (JSAC), vol. 31, no. 5, pp. 851-860, May 2013.
[23] T. Han and N. Ansari, “On greening cellular networks via multicell cooperation,” IEEE Wireless Communications, vol. 20, no. 1, Feb. 2013.
[24] C.-Y. Chang, W. Liao, and D.-S. Shiu “On the coverage preservation problem in green cellular networks,” Proc. IEEE GLOBECOM 2012, Anaheim, December 2012.
[25] S. Sesia, I. Toufik, M. Baker, LTE - The UMTS Long Term Evolution: From Theory to Practice, 2nd edition, Wiley Interscience, 2009.
[26] T. Biermann, L. Scalia, C. Choi, H. Karl, and W. Kellerer, “Backhaul network pre-clustering in cooperative cellular mobile access networks,” Proc. IEEE International Symposium on WoWMoM, Lucca, Italy, June 2011.
[27] F. Richter, A. J. Fehske, P. Marsch, and G. P. Fettweis, “Traffic demand and energy efficiency in heterogeneous cellular mobile radio networks,” Proc. IEEE VTC-Spring 2010, Taipei, May 2010.
[28] A. J. Fehske, P. Marsch, and G. P. Fettweis, ”Bit per Joule efficiency of cooperating base stations in cellular networks,” Proc. IEEE GLOBECOM 2010 Workshops, Miami, Dec. 2010.
[29] P. Marsch, G. P. Fettweis, Coordinated Multi-Point in Mobile Communications-From Theory to Practice, Cambridge University Press, 2011.
[30] H. M. Salkin, K. Mathur, Foundations of Integer Programming, North-Holland, 1989.
[31] G. Nemhauser, and L. Wosley, Integer and Combinatorial Optimization, 1st edition, Wiley-Interscience, 1999.
[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C Stein, Introduction to Algorithms, 3rd edition, MIT press,2009.
[33] S. Zhou, J. Gong, Z. Yang, Z. Niu, and P. Yang, “Green mobile access network with dynamic bs energy saving,” Proc. ACM MobiCom’09, Beijing, China, Sep. 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60888-
dc.description.abstract在綠能蜂巢式網路中,如何選擇哪個基地台進入睡眠模態是一個熱門的議題。過去的研究顯示基於現今使用者的流量狀況與位置可以決定出很有效的開關基地台策略,搭配上擴大範圍的功能,可以使得開啟的基地台數變為劇減。但是為了關閉更多基地台而增加的傳輸能量,它的能量消耗也變得更為重要,與整個基地台中的運作能量一樣是最主要的消耗原因,而這卻在最近的研究中屢屢被忽略。
  另外一方面,合作式技術在無線網路中扮演了重要的角色,理由是因為它能增加網路效率並能增加無線通道的傳輸品質,而它主要的功能是藉由兩個或多個基地台的同時傳輸,進而達到這些功能。也因此,藉由此吸引人的功能,我們可以用合作式技術去減少因為增加範圍而遽增的傳輸能量,但為了達到綠能的目的,如何同時決定哪一個基地台關閉,又哪些基地台與基地台之間要做合作變成一個很困難的問題,也因此這篇論文主要在探討設計一個有效率的演算法去同時解決綠能的目標並同時滿足使用者的需求。
  在這篇論文當中,我們研究了在綠能蜂巢式網路下對睡眠模態基地台的合作式策略,我們藉由大量的文獻回顧去點出傳輸能量問題的重要性,並為了將睡眠模態基地台和合作式策略能夠同時運用上,我們設計了新的訊框並提出了合理假設去達成此目標,另外一方面,為了能夠有效的提出我們的演算法,我們將此問題用二位元整數最佳化 (Binary Integer Programming) 的方式去呈現,並藉由集合覆蓋的問題去證明屬於一個NP-hard的問題。然後藉由典型二位元整數最佳化的解決方式,我們使用了搜尋列舉法 (Search Enumeration) 還有拉式鬆弛法 (Lagrangian Relaxation) 去求出此問題的下界。藉由上面方法觀察到的一些特性,我們提出了兩種啟發式演算法,並說明為何它為線性時間演算法。
  最後,從我們的模擬結果,我們可以發現我們的方法會比不考慮傳輸能量的綠能策略還要節能甚至也可以關閉更多的基地台,然後我們也同時發現基地台合作的數量會在不同的情況選擇不同的合作策略,有別於一般認定越多基地台合作就會有更好的效果,並用簡單的方式說明此現象的發生。跟沒有做任何綠能策略的狀況比起來,我們甚至可以省下三十到六十百分比的能量消耗,也可以證明了我們的方法是一個有效節能的合作式策略。
zh_TW
dc.description.abstractSwitching off base stations (BS) is an effective and efficient solution to energy saving in green cellular networks. The previous works focus mainly on when to switch off BSs based only on the amount of current traffic demands of active users, and use the coverage extension functionality to cover users as more as possible. Based on this objective, not only the constant power but also the transmit power becomes the main energy consumption of BS. However, the previous researches do not consider transmit power into account when applying switching-off functionality.
On the other hand, the cooperation technique is the key feature in next generation wireless networks, which most of researches use this technique to improve the throughput or enhance the spectrum efficiency via concurrent transmission by two or more BSs. As mentioned in the previous paragraph, the transmit power is ignored in energy saving paradigm. The cooperation technique is the remedy for solving this problem. However, jointly considering sleep-mode BSs and cooperation technique is the main challenge for the purpose of being green. Our goal is to design energy-efficient cooperation strategies to ensure our system is green and to satisfy users’ demands at the same time.
In this thesis, we investigate the benefit of sleep-mode functionality of BSs and the cooperation technique in green cellular networks. To combine these two features, we introduce the new frame structure and its applicable scenario. Then, we formulate our problem into binary integer programming, and prove it is NP-hard. Based on our formulation, we solve the lower bound for this problem via Lagrangian relaxation with search enumeration. Furthermore, we propose two heuristic algorithms by the properties of energy saving and the limitation of bandwidth.
In the simulation results, we can show that our algorithms are better than pure Power Control mechanism which lack of considering the transmit power not only in the number of switching-off BSs but also the total energy consumption. According to the results, we observe that the higher cooperation size doesn’t mean the better strategy for different situation. Compared to the original energy consumption when all BSs are opened, our algorithms can save 30 to 60% energy consumption, which shows our methods are indeed efficient energy-saving cooperation strategies.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:34:53Z (GMT). No. of bitstreams: 1
ntu-102-R00942032-1.pdf: 3760974 bytes, checksum: 9b5b06c37fcec4e9dab3c45e99140a9f (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES xi
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Background 1
1.1.1 Green Cellular Networks 1
1.1.2 Cooperation Techniques 4
1.2 Motivation 7
1.3 Contribution 8
1.4 Thesis Organization 9
Chapter 2 Related Works 11
Chapter 3 System Architecture 15
3.1 Frame Design and Assumptions 16
3.2 Physical Layer Model 17
3.2.1 Power Model 17
3.2.2 Cell Coverage Model 18
3.2.3 Propagation Model 18
3.2.4 User Traffic Model 19
3.3 Coverage Extension Functionality 20
Chapter 4 Problem Formulation and Complexity Analysis 23
4.1 Binary Integer Linear Programming 23
4.2 Complexity Analysis 25
Chapter 5 Proposed Algorithms 27
5.1 GreenCoMP: Near Optimal Approach 27
5.1.1 Search Enumeration 27
5.1.2 Lagrangian Relaxation 29
5.1.3 Lagrangian Dual Problem [31] 31
5.1.4 Properties and Observations 32
5.2 Heuristic Algorithms 35
5.2.1 Decision Criteria 35
5.2.2 Cell Scaling 38
5.2.3 HeavyCoMP 40
5.2.4 LightCoMP 42
Chapter 6 Performance Evaluation 45
6.1 Simulation Settings 45
6.2 Simulation Results 48
6.2.1 Number of Opened BSs 48
6.2.2 Number of Cooperation Sets 52
6.2.3 Energy Consumption 54
6.2.4 Energy Saving Ratio 55
6.2.5 Comparing with Increasing Cooperation Opportunity 57
6.2.6 The Results in Hotspot Topology 58
Chapter 7 Conclusions and Future Works 65
7.1 Conclusions 65
7.2 Future Works 66
REFERENCE 67
dc.language.isoen
dc.subject節能策略zh_TW
dc.subject多基地台合作zh_TW
dc.subject睡眠模態基地台zh_TW
dc.subject合作式傳輸zh_TW
dc.subject綠能蜂巢式網路zh_TW
dc.subjectGreen Cellular Networksen
dc.subjectEnergy Savingen
dc.subjectSleep-Mode BSsen
dc.subjectCooperative Transmissionen
dc.subjectMulti-Cell Cooperation.en
dc.title綠能蜂巢式網路下睡眠模態基地台之合作式策略zh_TW
dc.titleCooperation Strategies for Sleep-Mode Enabled Base Stations in Green Cellular Networksen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊竹星(Chu-Sing Yang),謝宏昀(Hung-Yun Hsieh),陳和麟(Ho-Lin Chen)
dc.subject.keyword綠能蜂巢式網路,節能策略,睡眠模態基地台,合作式傳輸,多基地台合作,zh_TW
dc.subject.keywordGreen Cellular Networks,Energy Saving,Sleep-Mode BSs,Cooperative Transmission,Multi-Cell Cooperation.,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2013-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved